#!/usr/bin/env python # # vector3 and rotation matrix classes # This follows the conventions in the ArduPilot code, # and is essentially a python version of the AP_Math library # # Andrew Tridgell, March 2012 # # This library is free software; you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published by the # Free Software Foundation; either version 2.1 of the License, or (at your # option) any later version. # # This library is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License # for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this library; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA '''rotation matrix class ''' from math import sin, cos, sqrt, asin, atan2, pi, radians, acos class Vector3: '''a vector''' def __init__(self, x=None, y=None, z=None): if x != None and y != None and z != None: self.x = x self.y = y self.z = z elif x != None and len(x) == 3: self.x = x[0] self.y = x[1] self.z = x[2] elif x != None: raise ValueError('bad initialiser') else: self.x = 0 self.y = 0 self.z = 0 def __repr__(self): return 'Vector3(%.2f, %.2f, %.2f)' % (self.x, self.y, self.z) def __add__(self, v): return Vector3(self.x + v.x, self.y + v.y, self.z + v.z) __radd__ = __add__ def __sub__(self, v): return Vector3(self.x - v.x, self.y - v.y, self.z - v.z) def __neg__(self): return Vector3(-self.x, -self.y, -self.z) def __rsub__(self, v): return Vector3(v.x - self.x, v.y - self.y, v.z - self.z) def __mul__(self, v): if isinstance(v, Vector3): '''dot product''' return self.x*v.x + self.y*v.y + self.z*v.z return Vector3(self.x * v, self.y * v, self.z * v) __rmul__ = __mul__ def __div__(self, v): return Vector3(self.x / v, self.y / v, self.z / v) def __mod__(self, v): '''cross product''' return Vector3(self.y*v.z - self.z*v.y, self.z*v.x - self.x*v.z, self.x*v.y - self.y*v.x) def __copy__(self): return Vector3(self.x, self.y, self.z) copy = __copy__ def length(self): return sqrt(self.x**2 + self.y**2 + self.z**2) def zero(self): self.x = self.y = self.z = 0 def angle(self, v): '''return the angle between this vector and another vector''' return acos(self * v) / (self.length() * v.length()) def normalized(self): return self / self.length() def normalize(self): v = self.normalized() self.x = v.x self.y = v.y self.z = v.z class Matrix3: '''a 3x3 matrix, intended as a rotation matrix''' def __init__(self, a=None, b=None, c=None): if a is not None and b is not None and c is not None: self.a = a.copy() self.b = b.copy() self.c = c.copy() else: self.identity() def __repr__(self): return 'Matrix3((%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f))' % ( self.a.x, self.a.y, self.a.z, self.b.x, self.b.y, self.b.z, self.c.x, self.c.y, self.c.z) def identity(self): self.a = Vector3(1,0,0) self.b = Vector3(0,1,0) self.c = Vector3(0,0,1) def transposed(self): return Matrix3(Vector3(self.a.x, self.b.x, self.c.x), Vector3(self.a.y, self.b.y, self.c.y), Vector3(self.a.z, self.b.z, self.c.z)) def from_euler(self, roll, pitch, yaw): '''fill the matrix from Euler angles in radians''' cp = cos(pitch) sp = sin(pitch) sr = sin(roll) cr = cos(roll) sy = sin(yaw) cy = cos(yaw) self.a.x = cp * cy self.a.y = (sr * sp * cy) - (cr * sy) self.a.z = (cr * sp * cy) + (sr * sy) self.b.x = cp * sy self.b.y = (sr * sp * sy) + (cr * cy) self.b.z = (cr * sp * sy) - (sr * cy) self.c.x = -sp self.c.y = sr * cp self.c.z = cr * cp def to_euler(self): '''find Euler angles for the matrix''' if self.c.x >= 1.0: pitch = pi elif self.c.x <= -1.0: pitch = -pi else: pitch = -asin(self.c.x) roll = atan2(self.c.y, self.c.z) yaw = atan2(self.b.x, self.a.x) return (roll, pitch, yaw) def __add__(self, m): return Matrix3(self.a + m.a, self.b + m.b, self.c + m.c) __radd__ = __add__ def __sub__(self, m): return Matrix3(self.a - m.a, self.b - m.b, self.c - m.c) def __rsub__(self, m): return Matrix3(m.a - self.a, m.b - self.b, m.c - self.c) def __mul__(self, other): if isinstance(other, Vector3): v = other return Vector3(self.a.x * v.x + self.a.y * v.y + self.a.z * v.z, self.b.x * v.x + self.b.y * v.y + self.b.z * v.z, self.c.x * v.x + self.c.y * v.y + self.c.z * v.z) elif isinstance(other, Matrix3): m = other return Matrix3(Vector3(self.a.x * m.a.x + self.a.y * m.b.x + self.a.z * m.c.x, self.a.x * m.a.y + self.a.y * m.b.y + self.a.z * m.c.y, self.a.x * m.a.z + self.a.y * m.b.z + self.a.z * m.c.z), Vector3(self.b.x * m.a.x + self.b.y * m.b.x + self.b.z * m.c.x, self.b.x * m.a.y + self.b.y * m.b.y + self.b.z * m.c.y, self.b.x * m.a.z + self.b.y * m.b.z + self.b.z * m.c.z), Vector3(self.c.x * m.a.x + self.c.y * m.b.x + self.c.z * m.c.x, self.c.x * m.a.y + self.c.y * m.b.y + self.c.z * m.c.y, self.c.x * m.a.z + self.c.y * m.b.z + self.c.z * m.c.z)) v = other return Matrix3(self.a * v, self.b * v, self.c * v) def __div__(self, v): return Matrix3(self.a / v, self.b / v, self.c / v) def __neg__(self): return Matrix3(-self.a, -self.b, -self.c) def __copy__(self): return Matrix3(self.a, self.b, self.c) copy = __copy__ def rotate(self, g): '''rotate the matrix by a given amount on 3 axes''' temp_matrix = Matrix3() a = self.a b = self.b c = self.c temp_matrix.a.x = a.y * g.z - a.z * g.y temp_matrix.a.y = a.z * g.x - a.x * g.z temp_matrix.a.z = a.x * g.y - a.y * g.x temp_matrix.b.x = b.y * g.z - b.z * g.y temp_matrix.b.y = b.z * g.x - b.x * g.z temp_matrix.b.z = b.x * g.y - b.y * g.x temp_matrix.c.x = c.y * g.z - c.z * g.y temp_matrix.c.y = c.z * g.x - c.x * g.z temp_matrix.c.z = c.x * g.y - c.y * g.x self.a += temp_matrix.a self.b += temp_matrix.b self.c += temp_matrix.c def normalize(self): '''re-normalise a rotation matrix''' error = self.a * self.b t0 = self.a - (self.b * (0.5 * error)) t1 = self.b - (self.a * (0.5 * error)) t2 = t0 % t1 self.a = t0 * (1.0 / t0.length()) self.b = t1 * (1.0 / t1.length()) self.c = t2 * (1.0 / t2.length()) def trace(self): '''the trace of the matrix''' return self.a.x + self.b.y + self.c.z def test_euler(): '''check that from_euler() and to_euler() are consistent''' m = Matrix3() from math import radians, degrees for r in range(-179, 179, 3): for p in range(-89, 89, 3): for y in range(-179, 179, 3): m.from_euler(radians(r), radians(p), radians(y)) (r2, p2, y2) = m.to_euler() v1 = Vector3(r,p,y) v2 = Vector3(degrees(r2),degrees(p2),degrees(y2)) diff = v1 - v2 if diff.length() > 1.0e-12: print('EULER ERROR:', v1, v2, diff.length()) if __name__ == "__main__": import doctest doctest.testmod() test_euler()