// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsSingle.cpp - ArduCopter motors library * Code by RandyMackay. DIYDrones.com * */ #include #include #include "AP_MotorsCoax.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsCoax::var_info[] = { // variables from parent vehicle AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0), // parameters 1 ~ 29 were reserved for tradheli // parameters 30 ~ 39 reserved for tricopter // parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files) // 40 was ROLL_SV_REV // 41 was PITCH_SV_REV // 42 was YAW_SV_REV // @Param: SV_SPEED // @DisplayName: Servo speed // @Description: Servo update speed // @Units: Hz AP_GROUPINFO("SV_SPEED", 43, AP_MotorsCoax, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS), // @Group: SV1_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_servo1, "SV1_", 44, AP_MotorsCoax, RC_Channel), // @Group: SV2_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_servo2, "SV2_", 45, AP_MotorsCoax, RC_Channel), // @Group: SV3_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_servo3, "SV3_", 46, AP_MotorsCoax, RC_Channel), // @Group: SV4_ // @Path: ../RC_Channel/RC_Channel.cpp AP_SUBGROUPINFO(_servo4, "SV4_", 47, AP_MotorsCoax, RC_Channel), AP_GROUPEND }; // init void AP_MotorsCoax::Init() { // set update rate for the 3 motors (but not the servo on channel 7) set_update_rate(_speed_hz); // set the motor_enabled flag so that the main ESC can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_5] = true; motor_enabled[AP_MOTORS_MOT_6] = true; // we set four servos to angle _servo1.set_type(RC_CHANNEL_TYPE_ANGLE); _servo2.set_type(RC_CHANNEL_TYPE_ANGLE); _servo3.set_type(RC_CHANNEL_TYPE_ANGLE); _servo4.set_type(RC_CHANNEL_TYPE_ANGLE); _servo1.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); _servo2.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); _servo3.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); _servo4.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE); } // set update rate to motors - a value in hertz void AP_MotorsCoax::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // set update rate for the 4 servos and 2 motors uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4 ; rc_set_freq(mask, _servo_speed); uint32_t mask2 = 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6 ; rc_set_freq(mask2, _speed_hz); } // enable - starts allowing signals to be sent to motors void AP_MotorsCoax::enable() { // enable output channels rc_enable_ch(AP_MOTORS_MOT_1); rc_enable_ch(AP_MOTORS_MOT_2); rc_enable_ch(AP_MOTORS_MOT_3); rc_enable_ch(AP_MOTORS_MOT_4); rc_enable_ch(AP_MOTORS_MOT_5); rc_enable_ch(AP_MOTORS_MOT_6); } // output_min - sends minimum values out to the motor and trim values to the servos void AP_MotorsCoax::output_min() { // send minimum value to each motor hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, _servo1.radio_trim); rc_write(AP_MOTORS_MOT_2, _servo2.radio_trim); rc_write(AP_MOTORS_MOT_3, _servo3.radio_trim); rc_write(AP_MOTORS_MOT_4, _servo4.radio_trim); rc_write(AP_MOTORS_MOT_5, _throttle_radio_min); rc_write(AP_MOTORS_MOT_6, _throttle_radio_min); hal.rcout->push(); } void AP_MotorsCoax::output_to_motors() { switch (_multicopter_flags.spool_mode) { case SHUT_DOWN: // sends minimum values out to the motors hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_roll_radio_passthrough, _servo1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_pitch_radio_passthrough, _servo2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_roll_radio_passthrough, _servo3)); rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_pitch_radio_passthrough, _servo4)); rc_write(AP_MOTORS_MOT_5, _throttle_radio_min); rc_write(AP_MOTORS_MOT_6, _throttle_radio_min); hal.rcout->push(); break; case SPIN_WHEN_ARMED: // sends output to motors when armed but not flying hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[0], _servo1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[1], _servo2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[2], _servo3)); rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_throttle_low_end_pct * _actuator_out[3], _servo4)); rc_write(AP_MOTORS_MOT_5, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle)); rc_write(AP_MOTORS_MOT_6, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle)); hal.rcout->push(); break; case SPOOL_UP: case THROTTLE_UNLIMITED: case SPOOL_DOWN: // set motor output based on thrust requests hal.rcout->cork(); rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(_actuator_out[0], _servo1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(_actuator_out[1], _servo2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(_actuator_out[2], _servo3)); rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(_actuator_out[3], _servo4)); rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_yt_ccw)); rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_yt_cw)); hal.rcout->push(); break; } } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsCoax::get_motor_mask() { uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4 | 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6; return rc_map_mask(mask); } // sends commands to the motors void AP_MotorsCoax::output_armed_stabilizing() { float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float thrust_min_rp; // the minimum throttle setting that will not limit the roll and pitch output float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy float throttle_thrust_hover = get_hover_throttle_as_high_end_pct(); // throttle hover thrust value, 0.0 - 1.0 float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing float throttle_thrust_rpy_mix; // partial calculation of throttle_thrust_best_rpy float y_scale; // this is used to scale the yaw to fit within the motor limits // apply voltage and air pressure compensation // todo: we shouldn't need input reversing with servo reversing roll_thrust = _roll_in * get_compensation_gain(); pitch_thrust = _pitch_in * get_compensation_gain(); yaw_thrust = _yaw_in * get_compensation_gain(); throttle_thrust = get_throttle() * get_compensation_gain(); // assuming maximum actuator defection the maximum roll and pitch torque is approximately proportional to thrust thrust_min_rp = MAX(fabsf(roll_thrust), fabsf(pitch_thrust)); // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= 0.0f) { throttle_thrust = 0.0f; limit.throttle_lower = true; } if (throttle_thrust >= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } throttle_thrust_rpy_mix = MAX(throttle_thrust, throttle_thrust*MAX(0.0f,1.0f-_throttle_rpy_mix)+throttle_thrust_hover*_throttle_rpy_mix); // check everything fits throttle_thrust_best_rpy = MIN(0.5f, throttle_thrust_rpy_mix); if (is_zero(yaw_thrust)) { y_scale = 1.0f; } else { y_scale = constrain_float(throttle_thrust_best_rpy/fabsf(0.5f * yaw_thrust), 0.0f, 1.0f); } thr_adj = throttle_thrust - throttle_thrust_best_rpy; if(y_scale < 1.0f){ // Full range is being used yaw. limit.yaw = true; if(thr_adj < 0.0f){ limit.throttle_lower = true; }else if(thr_adj > 0.0f){ limit.throttle_upper = true; } thr_adj = 0.0f; }else{ if(thr_adj < MIN(-(throttle_thrust_best_rpy - fabsf(0.5f * yaw_thrust)), -(throttle_thrust_best_rpy - thrust_min_rp))){ // Throttle can't be reduced to the desired level for one of two reasons: // 1. This would result in yaw control deviation causing the throttle output to be out of range. // 2. This would roll or pitch control would not be able to reach the desired level because of lack of thrust. thr_adj = MIN(-(throttle_thrust_best_rpy - fabsf(0.5f * yaw_thrust)), -(throttle_thrust_best_rpy - thrust_min_rp)); limit.throttle_lower = true; if(thrust_min_rp > throttle_thrust_best_rpy + thr_adj){ // todo: add limits for roll and pitch separately limit.roll_pitch = true; } }else if(thr_adj > 1.0f - (throttle_thrust_best_rpy + fabsf(0.5f * yaw_thrust))){ // Throttle can't be increased to desired value thr_adj = 1.0f - (throttle_thrust_best_rpy + fabsf(0.5f * yaw_thrust)); limit.throttle_upper = true; } } _thrust_yt_ccw = throttle_thrust_best_rpy + thr_adj + 0.5f * y_scale *_thrust_yt_ccw; _thrust_yt_cw = throttle_thrust_best_rpy + thr_adj - 0.5f * y_scale *_thrust_yt_cw; if(is_zero((throttle_thrust_best_rpy + thr_adj))){ limit.roll_pitch = true; if(roll_thrust < 0.0f){ _actuator_out[0] = -1.0f; }else if(roll_thrust > 0.0f){ _actuator_out[0] = 1.0f; }else{ _actuator_out[0] = 0.0f; } if(roll_thrust < 0.0f){ _actuator_out[1] = -1.0f; }else if(roll_thrust > 0.0f){ _actuator_out[1] = 1.0f; }else{ _actuator_out[1] = 0.0f; } }else{ // force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared // static thrust is proportional to the airflow velocity squared // therefore the torque of the roll and pitch actuators should be approximately proportional to // the angle of attack multiplied by the static thrust. _actuator_out[0] = roll_thrust/(throttle_thrust_best_rpy + thr_adj); _actuator_out[1] = pitch_thrust/(throttle_thrust_best_rpy + thr_adj); if(fabsf(_actuator_out[0]) > 1.0f){ limit.roll_pitch = true; _actuator_out[0] = constrain_float(_actuator_out[0], -1.0f, 1.0f); } if(fabsf(_actuator_out[1]) > 1.0f){ limit.roll_pitch = true; _actuator_out[1] = constrain_float(_actuator_out[1], -1.0f, 1.0f); } } _actuator_out[2] = _actuator_out[0]; _actuator_out[3] = _actuator_out[1]; } // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsCoax::output_test(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // output to motors and servos switch (motor_seq) { case 1: // flap servo 1 rc_write(AP_MOTORS_MOT_1, pwm); break; case 2: // flap servo 2 rc_write(AP_MOTORS_MOT_2, pwm); break; case 3: // flap servo 3 rc_write(AP_MOTORS_MOT_3, pwm); break; case 4: // flap servo 4 rc_write(AP_MOTORS_MOT_4, pwm); break; case 5: // motor 1 rc_write(AP_MOTORS_MOT_5, pwm); break; case 6: // motor 2 rc_write(AP_MOTORS_MOT_6, pwm); break; default: // do nothing break; } }