/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_Motors_Class.h" #include <AP_HAL/AP_HAL.h> #include <SRV_Channel/SRV_Channel.h> #include <GCS_MAVLink/GCS.h> #include <AP_Notify/AP_Notify.h> #define AP_MOTORS_SLEW_FILTER_CUTOFF 50.0f extern const AP_HAL::HAL& hal; // singleton instance AP_Motors *AP_Motors::_singleton; // Constructor AP_Motors::AP_Motors(uint16_t speed_hz) : _speed_hz(speed_hz), _throttle_filter(), _throttle_slew(), _throttle_slew_filter(), _spool_desired(DesiredSpoolState::SHUT_DOWN), _spool_state(SpoolState::SHUT_DOWN) { _singleton = this; // setup throttle filtering _throttle_filter.set_cutoff_frequency(0.0f); _throttle_filter.reset(0.0f); _throttle_slew_filter.set_cutoff_frequency(AP_MOTORS_SLEW_FILTER_CUTOFF); _throttle_slew_filter.reset(0.0f); // setup throttle slew detector _throttle_slew.reset(); // init limit flags limit.roll = true; limit.pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = true; _thrust_boost = false; _thrust_balanced = true; }; void AP_Motors::get_frame_and_type_string(char *buffer, uint8_t buflen) const { const char *frame_str = get_frame_string(); const char *type_str = get_type_string(); if (type_str != nullptr && strlen(type_str) #if AP_SCRIPTING_ENABLED && custom_frame_string == nullptr #endif ) { hal.util->snprintf(buffer, buflen, "Frame: %s/%s", frame_str, type_str); } else { hal.util->snprintf(buffer, buflen, "Frame: %s", frame_str); } } void AP_Motors::armed(bool arm) { if (_armed != arm) { _armed = arm; AP_Notify::flags.armed = arm; if (!arm) { save_params_on_disarm(); } } }; void AP_Motors::set_desired_spool_state(DesiredSpoolState spool) { if (_armed || (spool == DesiredSpoolState::SHUT_DOWN)) { _spool_desired = spool; } }; // pilot input in the -1 ~ +1 range for roll, pitch and yaw. 0~1 range for throttle void AP_Motors::set_radio_passthrough(float roll_input, float pitch_input, float throttle_input, float yaw_input) { _roll_radio_passthrough = roll_input; _pitch_radio_passthrough = pitch_input; _throttle_radio_passthrough = throttle_input; _yaw_radio_passthrough = yaw_input; } /* write to an output channel */ void AP_Motors::rc_write(uint8_t chan, uint16_t pwm) { SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(chan); if ((1U<<chan) & _motor_pwm_range_mask) { // note that PWM_MIN/MAX has been forced to 1000/2000 SRV_Channels::set_output_scaled(function, pwm - 1000); } else { SRV_Channels::set_output_pwm(function, pwm); } } /* write to an output channel for an angle actuator */ void AP_Motors::rc_write_angle(uint8_t chan, int16_t angle_cd) { SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(chan); SRV_Channels::set_output_scaled(function, angle_cd); } /* set frequency of a set of channels */ void AP_Motors::rc_set_freq(uint32_t motor_mask, uint16_t freq_hz) { if (freq_hz > 50) { _motor_fast_mask |= motor_mask; } const uint32_t mask = motor_mask_to_srv_channel_mask(motor_mask); hal.rcout->set_freq(mask, freq_hz); hal.rcout->set_dshot_esc_type(SRV_Channels::get_dshot_esc_type()); switch (pwm_type(_pwm_type.get())) { case PWM_TYPE_ONESHOT: if (freq_hz > 50 && mask != 0) { hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_ONESHOT); } break; case PWM_TYPE_ONESHOT125: if (freq_hz > 50 && mask != 0) { hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_ONESHOT125); } break; case PWM_TYPE_BRUSHED: hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_BRUSHED); break; case PWM_TYPE_DSHOT150: hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_DSHOT150); break; case PWM_TYPE_DSHOT300: hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_DSHOT300); break; case PWM_TYPE_DSHOT600: hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_DSHOT600); break; case PWM_TYPE_DSHOT1200: hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_DSHOT1200); break; case PWM_TYPE_PWM_RANGE: /* this is a motor output type for multirotors which honours the SERVOn_MIN/MAX values per channel */ _motor_pwm_range_mask |= motor_mask; for (uint8_t i=0; i<16; i++) { if ((1U<<i) & motor_mask) { SRV_Channels::set_range(SRV_Channels::get_motor_function(i), 1000); } } hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_NORMAL); break; default: hal.rcout->set_output_mode(mask, AP_HAL::RCOutput::MODE_PWM_NORMAL); break; } } /* map an internal motor mask to real motor mask, accounting for SERVOn_FUNCTION mappings, and allowing for multiple outputs per motor number */ uint32_t AP_Motors::motor_mask_to_srv_channel_mask(uint32_t mask) const { uint32_t mask2 = 0; for (uint8_t i = 0; i < 32; i++) { uint32_t bit = 1UL << i; if (mask & bit) { SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(i); mask2 |= SRV_Channels::get_output_channel_mask(function); } } return mask2; } /* add a motor, setting up default output function as needed */ void AP_Motors::add_motor_num(int8_t motor_num) { // ensure valid motor number is provided if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) { SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(motor_num); SRV_Channels::set_aux_channel_default(function, motor_num); } } // set limit flag for pitch, roll and yaw void AP_Motors::set_limit_flag_pitch_roll_yaw(bool flag) { limit.roll = flag; limit.pitch = flag; limit.yaw = flag; } #if AP_SCRIPTING_ENABLED void AP_Motors::set_external_limits(bool roll, bool pitch, bool yaw, bool throttle_lower, bool throttle_upper) { external_limits.roll = roll; external_limits.pitch = pitch; external_limits.yaw = yaw; external_limits.throttle_lower = throttle_lower; external_limits.throttle_upper = throttle_upper; } #endif // returns true if the configured PWM type is digital and should have fixed endpoints bool AP_Motors::is_digital_pwm_type() const { switch (_pwm_type) { case PWM_TYPE_DSHOT150: case PWM_TYPE_DSHOT300: case PWM_TYPE_DSHOT600: case PWM_TYPE_DSHOT1200: return true; case PWM_TYPE_NORMAL: case PWM_TYPE_ONESHOT: case PWM_TYPE_ONESHOT125: case PWM_TYPE_BRUSHED: case PWM_TYPE_PWM_RANGE: break; } return false; } // return string corresponding to frame_class const char* AP_Motors::get_frame_string() const { #if AP_SCRIPTING_ENABLED if (custom_frame_string != nullptr) { return custom_frame_string; } #endif return _get_frame_string(); } #if AP_SCRIPTING_ENABLED // set custom frame string void AP_Motors::set_frame_string(const char * str) { if (custom_frame_string != nullptr) { return; } const size_t len = strlen(str)+1; custom_frame_string = new char[len]; if (custom_frame_string != nullptr) { strncpy(custom_frame_string, str, len); } } #endif // output_test_seq - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_Motors::output_test_seq(uint8_t motor_seq, int16_t pwm) { if (armed() && _interlock) { _output_test_seq(motor_seq, pwm); } } bool AP_Motors::arming_checks(size_t buflen, char *buffer) const { if (!initialised_ok()) { hal.util->snprintf(buffer, buflen, "Check frame class and type"); return false; } return true; } bool AP_Motors::motor_test_checks(size_t buflen, char *buffer) const { // Must pass base class arming checks (the function above) // Do not run frame specific arming checks as motor test is less strict // For example not all the outputs have to be assigned return AP_Motors::arming_checks(buflen, buffer); } namespace AP { AP_Motors *motors() { return AP_Motors::get_singleton(); } }