// -*- tab-width: 4; Mode: C++; c-basic-offset: 3; indent-tabs-mode: t -*- /* AP_Compass_HMC5883L.cpp - Arduino Library for HMC5883L I2C magnetometer Code by Jordi Muñoz and Jose Julio. DIYDrones.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Sensor is conected to I2C port Sensor is initialized in Continuos mode (10Hz) */ // AVR LibC Includes #include #include "WConstants.h" #include #include "AP_Compass_HMC5883L.h" #define COMPASS_ADDRESS 0x1E #define ConfigRegA 0x00 #define ConfigRegB 0x01 #define ModeRegister 0x02 #define DataOutputXMSB 0x03 #define DataOutputXLSB 0x04 #define DataOutputZMSB 0x05 #define DataOutputZLSB 0x06 #define DataOutputYMSB 0x07 #define DataOutputYLSB 0x08 #define StatusRegister 0x09 #define IDRegisterA 0x0A #define IDRegisterB 0x0B #define IDRegisterC 0x0C // default gain value #define magGain 0x20 // ModeRegister valid modes #define ContinuousConversion 0x00 #define SingleConversion 0x01 // ConfigRegA valid sample averaging #define SampleAveraging_1 0x00 #define SampleAveraging_2 0x01 #define SampleAveraging_4 0x02 #define SampleAveraging_8 0x03 // ConfigRegA valid data output rates #define DataOutputRate_0_75HZ 0x00 #define DataOutputRate_1_5HZ 0x01 #define DataOutputRate_3HZ 0x02 #define DataOutputRate_7_5HZ 0x03 #define DataOutputRate_15HZ 0x04 #define DataOutputRate_30HZ 0x05 #define DataOutputRate_75HZ 0x06 // ConfigRegA valid measurement configuration bits #define NormalOperation 0x10 #define PositiveBiasConfig 0x11 #define NegativeBiasConfig 0x12 // Public Methods ////////////////////////////////////////////////////////////// bool AP_Compass_HMC5883L::init() { int numAttempts = 0; int success = 0; delay(10); // calibration initialisation calibration[0] = 1.0; calibration[1] = 1.0; calibration[2] = 1.0; while( success == 0 && numAttempts < 5 ) { // record number of attempts at initialisation numAttempts++; // force positiveBias (compass should return 715 for all channels) Wire.beginTransmission(COMPASS_ADDRESS); Wire.send(ConfigRegA); Wire.send(SampleAveraging_8<<5 | DataOutputRate_75HZ<<2 | PositiveBiasConfig); if (0 != Wire.endTransmission()) continue; // compass not responding on the bus delay(50); // set gains Wire.beginTransmission(COMPASS_ADDRESS); Wire.send(ConfigRegB); Wire.send(magGain); Wire.endTransmission(); delay(10); // put compass into single-measurement mode Wire.beginTransmission(COMPASS_ADDRESS); Wire.send(ModeRegister); Wire.send(SingleConversion); Wire.endTransmission(); delay(10); // read values from the compass read(); delay(10); // calibrate if( abs(mag_x) > 500 && abs(mag_x) < 1000 && abs(mag_y) > 500 && abs(mag_y) < 1000 && abs(mag_z) > 500 && abs(mag_z) < 1000) { calibration[0] = fabs(715.0 / mag_x); calibration[1] = fabs(715.0 / mag_y); calibration[2] = fabs(715.0 / mag_z); // mark success success = 1; } // leave test mode Wire.beginTransmission(COMPASS_ADDRESS); Wire.send(ConfigRegA); Wire.send(SampleAveraging_8<<5 | DataOutputRate_75HZ<<2 | NormalOperation); Wire.endTransmission(); delay(50); Wire.beginTransmission(COMPASS_ADDRESS); Wire.send(ModeRegister); Wire.send(ContinuousConversion); // Set continuous mode (default to 10Hz) Wire.endTransmission(); // End transmission delay(50); } return(success); } // Read Sensor data void AP_Compass_HMC5883L::read() { int i = 0; byte buff[6]; Vector3f rot_mag; Wire.beginTransmission(COMPASS_ADDRESS); Wire.send(0x03); //sends address to read from Wire.endTransmission(); //end transmission //Wire.beginTransmission(COMPASS_ADDRESS); Wire.requestFrom(COMPASS_ADDRESS, 6); // request 6 bytes from device while(Wire.available()) { buff[i] = Wire.receive(); // receive one byte i++; } Wire.endTransmission(); //end transmission if (i==6) // All bytes received? { // MSB byte first, then LSB, X,Y,Z mag_x = -((((int)buff[0]) << 8) | buff[1]) * calibration[0]; // X axis mag_y = ((((int)buff[4]) << 8) | buff[5]) * calibration[1]; // Y axis mag_z = -((((int)buff[2]) << 8) | buff[3]) * calibration[2]; // Z axis last_update = millis(); // record time of update // rotate and offset the magnetometer values // XXX this could well be done in common code... rot_mag = _orientation_matrix.get() * Vector3f(mag_x,mag_y,mag_z); rot_mag = rot_mag + _offset.get(); mag_x = rot_mag.x; mag_y = rot_mag.y; mag_z = rot_mag.z; } }