/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 #include "AP_InertialSensor_PX4.h" const extern AP_HAL::HAL& hal; #include #include #include #include #include #include uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate ) { switch (sample_rate) { case RATE_50HZ: _sample_divider = 4; break; case RATE_100HZ: _sample_divider = 2; break; case RATE_200HZ: default: _sample_divider = 1; break; } // init accelerometers _accel_fd = open(ACCEL_DEVICE_PATH, O_RDONLY); if (_accel_fd < 0) { hal.scheduler->panic("Unable to open accel device " ACCEL_DEVICE_PATH); } _gyro_fd = open(GYRO_DEVICE_PATH, O_RDONLY); if (_gyro_fd < 0) { hal.scheduler->panic("Unable to open gyro device " GYRO_DEVICE_PATH); } /* * set the accel and gyro sampling rate. We always set these to * 200 then average in this driver */ ioctl(_accel_fd, ACCELIOCSSAMPLERATE, 200); ioctl(_accel_fd, SENSORIOCSPOLLRATE, 200); ioctl(_gyro_fd, GYROIOCSSAMPLERATE, 200); ioctl(_gyro_fd, SENSORIOCSPOLLRATE, 200); // ask for a 10 sample buffer. The mpu6000 PX4 driver doesn't // support this yet, but when it does we want to use it ioctl(_accel_fd, SENSORIOCSQUEUEDEPTH, 10); ioctl(_gyro_fd, SENSORIOCSQUEUEDEPTH, 10); return AP_PRODUCT_ID_PX4; } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_PX4::update(void) { while (num_samples_available() == 0) { hal.scheduler->delay(1); } uint32_t now = hal.scheduler->micros(); // the current mpu6000 PX4 driver does not buffer samples, so // using the sample count times 5ms would produce a bad delta time // if we missed one. For now we need to use the clock to get the // delta time _delta_time = (now - _last_update_usec) * 1.0e-6f; _last_update_usec = now; Vector3f accel_scale = _accel_scale.get(); _accel = _accel_sum / _accel_sum_count; _accel.rotate(_board_orientation); _accel.x *= accel_scale.x; _accel.y *= accel_scale.y; _accel.z *= accel_scale.z; _accel -= _accel_offset; _gyro = _gyro_sum / _gyro_sum_count; _gyro.rotate(_board_orientation); _gyro -= _gyro_offset; _accel_sum.zero(); _accel_sum_count = 0; _gyro_sum.zero(); _gyro_sum_count = 0; return true; } bool AP_InertialSensor_PX4::new_data_available(void) { return num_samples_available() > 0; } float AP_InertialSensor_PX4::temperature(void) { return 0.0; } float AP_InertialSensor_PX4::get_delta_time(void) { return _delta_time; } uint32_t AP_InertialSensor_PX4::get_last_sample_time_micros(void) { return _last_update_usec; } float AP_InertialSensor_PX4::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } uint16_t AP_InertialSensor_PX4::num_samples_available(void) { struct accel_report accel_report; struct gyro_report gyro_report; if (::read(_accel_fd, &accel_report, sizeof(accel_report)) == sizeof(accel_report)) { _accel_sum += Vector3f(accel_report.x, accel_report.y, accel_report.z); _accel_sum_count++; } if (::read(_gyro_fd, &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report)) { _gyro_sum += Vector3f(gyro_report.x, gyro_report.y, gyro_report.z); _gyro_sum_count++; } return min(_accel_sum_count, _gyro_sum_count) / _sample_divider; } #endif // CONFIG_HAL_BOARD