// desired angle in // motor commands out (in degrees) void init_pids() { max_stabilize_dampener = pid_stabilize_roll.kP() * 2500; stabilze_dampener = 5729.57795 * stabilize_rate_roll_pitch; max_yaw_dampener = pid_yaw.kP() * 6000; // .3 * 6000 = 1800 stabilze_yaw_dampener = 5729.57795 * stabilize_rate_yaw; // .3 } void output_stabilize() { float roll_error, pitch_error; Vector3f omega = dcm.get_gyro(); //pitch_sensor = roll_sensor = 0; // testing only // control +- 45° is mixed with the navigation request by the Autopilot // output is in degrees = target pitch and roll of copter rc_1.servo_out = rc_1.control_mix(nav_roll); rc_2.servo_out = rc_2.control_mix(nav_pitch); roll_error = rc_1.servo_out - roll_sensor; pitch_error = rc_2.servo_out - pitch_sensor; yaw_error = nav_yaw - yaw_sensor; yaw_error = wrap_180(yaw_error); // limit the error we're feeding to the PID roll_error = constrain(roll_error, -2500, 2500); pitch_error = constrain(pitch_error, -2500, 2500); yaw_error = constrain(yaw_error, -6000, 6000); //Serial.printf("s: %d \t mix %d, err %d", (int)roll_sensor, (int)rc_1.servo_out, (int)roll_error); // write out angles back to servo out - this will be converted to PWM by RC_Channel rc_1.servo_out = pid_stabilize_roll.get_pid(roll_error, deltaMiliSeconds, 1.0); rc_2.servo_out = pid_stabilize_pitch.get_pid(pitch_error, deltaMiliSeconds, 1.0); rc_4.servo_out = pid_yaw.get_pid(yaw_error, deltaMiliSeconds, 1.0); // .3 = 198pwm //Serial.printf("\tpid: %d", (int)rc_1.servo_out); // We adjust the output by the rate of rotation: // Rate control through bias corrected gyro rates // omega is the raw gyro reading int roll_dampener = (omega.x * stabilze_dampener);// Omega is in radians int pitch_dampener = (omega.y * stabilze_dampener); int yaw_dampener = (omega.z * stabilze_yaw_dampener); // Limit dampening to be equal to propotional term for symmetry rc_1.servo_out -= constrain(roll_dampener, -max_stabilize_dampener, max_stabilize_dampener); // +- 15° rc_2.servo_out -= constrain(pitch_dampener, -max_stabilize_dampener, max_stabilize_dampener); // +- 15° rc_4.servo_out -= constrain(yaw_dampener, -max_yaw_dampener, max_yaw_dampener); //Serial.printf(" yaw out: %d, d: %d", (int)rc_4.angle_to_pwm(), yaw_dampener); //Serial.printf("\trd: %d", roll_dampener); //Serial.printf("\tlimit: %d, PWM: %d", rc_1.servo_out, rc_1.angle_to_pwm()); } // err -2500 pid: -1100 rd: 1117 limit: -1650, PWM: -152 //s: -1247 mix 0, err 1247 pid: 548 rd: -153 limit: 395, PWM: 35 void output_rate_control() { Vector3f omega = dcm.get_gyro(); rc_4.servo_out = rc_4.control_in; rc_1.servo_out = rc_2.control_in; rc_2.servo_out = rc_2.control_in; // Rate control through bias corrected gyro rates // omega is the raw gyro reading plus Omega_I, so it´s bias corrected rc_1.servo_out -= (omega.x * 5729.57795 * acro_rate_roll_pitch); rc_2.servo_out -= (omega.y * 5729.57795 * acro_rate_roll_pitch); rc_4.servo_out -= (omega.z * 5729.57795 * acro_rate_yaw); //Serial.printf("\trated out %d, omega ", rc_1.servo_out); //Serial.print((Omega[0] * 5729.57795 * stabilize_rate_roll_pitch), 3); // Limit output rc_1.servo_out = constrain(rc_1.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT); rc_2.servo_out = constrain(rc_2.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT); rc_4.servo_out = constrain(rc_4.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT); } // Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. // Keeps outdated data out of our calculations void reset_I(void) { pid_nav.reset_I(); pid_throttle.reset_I(); }