/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Simulator for the IntelligentEnergy 2.4kWh FuelCell generator */ #include #include "SIM_IntelligentEnergy24.h" #include "SITL.h" #include #include extern const AP_HAL::HAL& hal; using namespace SITL; // table of user settable parameters const AP_Param::GroupInfo IntelligentEnergy24::var_info[] = { // @Param: ENABLE // @DisplayName: IntelligentEnergy 2.4kWh FuelCell sim enable/disable // @Description: Allows you to enable (1) or disable (0) the FuelCell simulator // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO("ENABLE", 1, IntelligentEnergy24, enabled, 0), // @Param: STATE // @DisplayName: Explicitly set state // @Description: Explicity specify a state for the generator to be in // @User: Advanced AP_GROUPINFO("STATE", 2, IntelligentEnergy24, set_state, -1), // @Param: ERROR // @DisplayName: Explicitly set error code // @Description: Explicity specify an error code to send to the generator // @User: Advanced AP_GROUPINFO("ERROR", 3, IntelligentEnergy24, err_code, 0), AP_GROUPEND }; IntelligentEnergy24::IntelligentEnergy24() : IntelligentEnergy::IntelligentEnergy() { AP_Param::setup_object_defaults(this, var_info); } void IntelligentEnergy24::update(const struct sitl_input &input) { if (!enabled.get()) { return; } // gcs().send_text(MAV_SEVERITY_INFO, "fuelcell update"); update_send(); } void IntelligentEnergy24::update_send() { // just send a chunk of data at 1Hz: const uint32_t now = AP_HAL::millis(); if (now - last_sent_ms < 500) { return; } // Simulate constant current charge/discharge of the battery float amps = discharge ? -20.0f : 20.0f; // Simulate constant tank pressure. This isn't true in reality, but is good enough const int16_t tank_bar = 250; // Update pack capacity remaining bat_capacity_mAh += amps*(now - last_sent_ms)/3600.0f; // From capacity remaining approximate voltage by linear interpolation const float min_bat_vol = 42.0f; const float max_bat_vol = 50.4f; const float max_bat_capactiy_mAh = 3300; battery_voltage = bat_capacity_mAh / max_bat_capactiy_mAh * (max_bat_vol - min_bat_vol) + min_bat_vol; // Decide if we need to charge or discharge the battery if (battery_voltage <= min_bat_vol) { discharge = false; } else if (battery_voltage >= max_bat_vol) { discharge = true; } int32_t battery_pwr = battery_voltage * amps; // Watts // These are non-physical values const int32_t pwr_out = float_to_int32(battery_pwr*1.4f); const uint32_t spm_pwr = float_to_uint32(battery_pwr*0.3f); uint32_t state = set_state; if (set_state == -1) { state = 2; // Running } last_sent_ms = now; char message[128]; hal.util->snprintf(message, ARRAY_SIZE(message), "<%i,%.1f,%i,%u,%i,%u,%u>\n", tank_bar, battery_voltage, (signed)pwr_out, (unsigned)spm_pwr, (signed)battery_pwr, (unsigned)state, (unsigned)err_code); if ((unsigned)write_to_autopilot(message, strlen(message)) != strlen(message)) { AP_HAL::panic("Failed to write to autopilot: %s", strerror(errno)); } }