// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if LOGGING_ENABLED == ENABLED // Code to Write and Read packets from DataFlash log memory // Code to interact with the user to dump or erase logs #if CLI_ENABLED == ENABLED // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static bool print_log_menu(void); static int8_t dump_log(uint8_t argc, const Menu::arg *argv); static int8_t erase_logs(uint8_t argc, const Menu::arg *argv); static int8_t select_logs(uint8_t argc, const Menu::arg *argv); // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details const struct Menu::command log_menu_commands[] PROGMEM = { {"dump", dump_log}, {"erase", erase_logs}, {"enable", select_logs}, {"disable", select_logs} }; // A Macro to create the Menu MENU2(log_menu, "Log", log_menu_commands, print_log_menu); static bool print_log_menu(void) { cliSerial->printf_P(PSTR("logs enabled: ")); if (0 == g.log_bitmask) { cliSerial->printf_P(PSTR("none")); }else{ if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) cliSerial->printf_P(PSTR(" ATTITUDE_FAST")); if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) cliSerial->printf_P(PSTR(" ATTITUDE_MED")); if (g.log_bitmask & MASK_LOG_GPS) cliSerial->printf_P(PSTR(" GPS")); if (g.log_bitmask & MASK_LOG_PM) cliSerial->printf_P(PSTR(" PM")); if (g.log_bitmask & MASK_LOG_CTUN) cliSerial->printf_P(PSTR(" CTUN")); if (g.log_bitmask & MASK_LOG_NTUN) cliSerial->printf_P(PSTR(" NTUN")); if (g.log_bitmask & MASK_LOG_RCIN) cliSerial->printf_P(PSTR(" RCIN")); if (g.log_bitmask & MASK_LOG_IMU) cliSerial->printf_P(PSTR(" IMU")); if (g.log_bitmask & MASK_LOG_CMD) cliSerial->printf_P(PSTR(" CMD")); if (g.log_bitmask & MASK_LOG_CURRENT) cliSerial->printf_P(PSTR(" CURRENT")); if (g.log_bitmask & MASK_LOG_RCOUT) cliSerial->printf_P(PSTR(" RCOUT")); if (g.log_bitmask & MASK_LOG_OPTFLOW) cliSerial->printf_P(PSTR(" OPTFLOW")); if (g.log_bitmask & MASK_LOG_COMPASS) cliSerial->printf_P(PSTR(" COMPASS")); if (g.log_bitmask & MASK_LOG_CAMERA) cliSerial->printf_P(PSTR(" CAMERA")); } cliSerial->println(); DataFlash.ListAvailableLogs(cliSerial); return(true); } #if CLI_ENABLED == ENABLED static int8_t dump_log(uint8_t argc, const Menu::arg *argv) { int16_t dump_log; uint16_t dump_log_start; uint16_t dump_log_end; uint16_t last_log_num; // check that the requested log number can be read dump_log = argv[1].i; last_log_num = DataFlash.find_last_log(); if (dump_log == -2) { DataFlash.DumpPageInfo(cliSerial); return(-1); } else if (dump_log <= 0) { cliSerial->printf_P(PSTR("dumping all\n")); Log_Read(0, 1, 0); return(-1); } else if ((argc != 2) || ((uint16_t)dump_log <= (last_log_num - DataFlash.get_num_logs())) || (static_cast(dump_log) > last_log_num)) { cliSerial->printf_P(PSTR("bad log number\n")); return(-1); } DataFlash.get_log_boundaries(dump_log, dump_log_start, dump_log_end); Log_Read((uint16_t)dump_log, dump_log_start, dump_log_end); return (0); } #endif static int8_t erase_logs(uint8_t argc, const Menu::arg *argv) { in_mavlink_delay = true; do_erase_logs(); in_mavlink_delay = false; return 0; } static int8_t select_logs(uint8_t argc, const Menu::arg *argv) { uint16_t bits; if (argc != 2) { cliSerial->printf_P(PSTR("missing log type\n")); return(-1); } bits = 0; // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // that name as the argument to the command, and set the bit in // bits accordingly. // if (!strcasecmp_P(argv[1].str, PSTR("all"))) { bits = ~0; } else { #define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(# _s))) bits |= MASK_LOG_ ## _s TARG(ATTITUDE_FAST); TARG(ATTITUDE_MED); TARG(GPS); TARG(PM); TARG(CTUN); TARG(NTUN); TARG(RCIN); TARG(IMU); TARG(CMD); TARG(CURRENT); TARG(RCOUT); TARG(OPTFLOW); TARG(COMPASS); TARG(CAMERA); #undef TARG } if (!strcasecmp_P(argv[0].str, PSTR("enable"))) { g.log_bitmask.set_and_save(g.log_bitmask | bits); }else{ g.log_bitmask.set_and_save(g.log_bitmask & ~bits); } return(0); } static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { log_menu.run(); return 0; } #endif // CLI_ENABLED static void do_erase_logs(void) { gcs_send_text_P(SEVERITY_HIGH, PSTR("Erasing logs\n")); DataFlash.EraseAll(); gcs_send_text_P(SEVERITY_HIGH, PSTR("Log erase complete\n")); } #if AUTOTUNE_ENABLED == ENABLED struct PACKED log_AutoTune { LOG_PACKET_HEADER; uint8_t axis; // roll or pitch uint8_t tune_step; // tuning PI or D up or down float rate_min; // maximum achieved rotation rate float rate_max; // maximum achieved rotation rate float new_gain_rp; // newly calculated gain float new_gain_rd; // newly calculated gain float new_gain_sp; // newly calculated gain }; // Write an Autotune data packet static void Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float rate_min, float rate_max, float new_gain_rp, float new_gain_rd, float new_gain_sp) { struct log_AutoTune pkt = { LOG_PACKET_HEADER_INIT(LOG_AUTOTUNE_MSG), axis : axis, tune_step : tune_step, rate_min : rate_min, rate_max : rate_max, new_gain_rp : new_gain_rp, new_gain_rd : new_gain_rd, new_gain_sp : new_gain_sp }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_AutoTuneDetails { LOG_PACKET_HEADER; int16_t angle_cd; // lean angle in centi-degrees float rate_cds; // current rotation rate in centi-degrees / second }; // Write an Autotune data packet static void Log_Write_AutoTuneDetails(int16_t angle_cd, float rate_cds) { struct log_AutoTuneDetails pkt = { LOG_PACKET_HEADER_INIT(LOG_AUTOTUNEDETAILS_MSG), angle_cd : angle_cd, rate_cds : rate_cds }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } #endif // Write a Current data packet static void Log_Write_Current() { DataFlash.Log_Write_Current(battery, g.rc_3.servo_out); // also write power status DataFlash.Log_Write_Power(); } struct PACKED log_Optflow { LOG_PACKET_HEADER; uint32_t time_ms; uint8_t surface_quality; float flow_x; float flow_y; float body_x; float body_y; }; // Write an optical flow packet static void Log_Write_Optflow() { #if OPTFLOW == ENABLED // exit immediately if not enabled if (!optflow.enabled()) { return; } const Vector2f &flowRate = optflow.flowRate(); const Vector2f &bodyRate = optflow.bodyRate(); struct log_Optflow pkt = { LOG_PACKET_HEADER_INIT(LOG_OPTFLOW_MSG), time_ms : hal.scheduler->millis(), surface_quality : optflow.quality(), flow_x : flowRate.x, flow_y : flowRate.y, body_x : bodyRate.x, body_y : bodyRate.y }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); #endif // OPTFLOW == ENABLED } struct PACKED log_Nav_Tuning { LOG_PACKET_HEADER; uint32_t time_ms; float desired_pos_x; float desired_pos_y; float pos_x; float pos_y; float desired_vel_x; float desired_vel_y; float vel_x; float vel_y; float desired_accel_x; float desired_accel_y; }; // Write an Nav Tuning packet static void Log_Write_Nav_Tuning() { const Vector3f &pos_target = pos_control.get_pos_target(); const Vector3f &vel_target = pos_control.get_vel_target(); const Vector3f &accel_target = pos_control.get_accel_target(); const Vector3f &position = inertial_nav.get_position(); const Vector3f &velocity = inertial_nav.get_velocity(); struct log_Nav_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_NAV_TUNING_MSG), time_ms : hal.scheduler->millis(), desired_pos_x : pos_target.x, desired_pos_y : pos_target.y, pos_x : position.x, pos_y : position.y, desired_vel_x : vel_target.x, desired_vel_y : vel_target.y, vel_x : velocity.x, vel_y : velocity.y, desired_accel_x : accel_target.x, desired_accel_y : accel_target.y }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Control_Tuning { LOG_PACKET_HEADER; uint32_t time_ms; int16_t throttle_in; int16_t angle_boost; int16_t throttle_out; float desired_alt; float inav_alt; int32_t baro_alt; int16_t desired_sonar_alt; int16_t sonar_alt; int16_t desired_climb_rate; int16_t climb_rate; }; // Write a control tuning packet static void Log_Write_Control_Tuning() { struct log_Control_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_CONTROL_TUNING_MSG), time_ms : hal.scheduler->millis(), throttle_in : g.rc_3.control_in, angle_boost : attitude_control.angle_boost(), throttle_out : g.rc_3.servo_out, desired_alt : pos_control.get_alt_target() / 100.0f, inav_alt : current_loc.alt / 100.0f, baro_alt : baro_alt, desired_sonar_alt : (int16_t)target_sonar_alt, sonar_alt : sonar_alt, desired_climb_rate : desired_climb_rate, climb_rate : climb_rate }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Compass { LOG_PACKET_HEADER; uint32_t time_ms; int16_t mag_x; int16_t mag_y; int16_t mag_z; int16_t offset_x; int16_t offset_y; int16_t offset_z; int16_t motor_offset_x; int16_t motor_offset_y; int16_t motor_offset_z; }; // Write a Compass packet static void Log_Write_Compass() { const Vector3f &mag_offsets = compass.get_offsets(0); const Vector3f &mag_motor_offsets = compass.get_motor_offsets(0); const Vector3f &mag = compass.get_field(0); struct log_Compass pkt = { LOG_PACKET_HEADER_INIT(LOG_COMPASS_MSG), time_ms : hal.scheduler->millis(), mag_x : (int16_t)mag.x, mag_y : (int16_t)mag.y, mag_z : (int16_t)mag.z, offset_x : (int16_t)mag_offsets.x, offset_y : (int16_t)mag_offsets.y, offset_z : (int16_t)mag_offsets.z, motor_offset_x : (int16_t)mag_motor_offsets.x, motor_offset_y : (int16_t)mag_motor_offsets.y, motor_offset_z : (int16_t)mag_motor_offsets.z }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); #if COMPASS_MAX_INSTANCES > 1 if (compass.get_count() > 1) { const Vector3f &mag2_offsets = compass.get_offsets(1); const Vector3f &mag2_motor_offsets = compass.get_motor_offsets(1); const Vector3f &mag2 = compass.get_field(1); struct log_Compass pkt2 = { LOG_PACKET_HEADER_INIT(LOG_COMPASS2_MSG), time_ms : hal.scheduler->millis(), mag_x : (int16_t)mag2.x, mag_y : (int16_t)mag2.y, mag_z : (int16_t)mag2.z, offset_x : (int16_t)mag2_offsets.x, offset_y : (int16_t)mag2_offsets.y, offset_z : (int16_t)mag2_offsets.z, motor_offset_x : (int16_t)mag2_motor_offsets.x, motor_offset_y : (int16_t)mag2_motor_offsets.y, motor_offset_z : (int16_t)mag2_motor_offsets.z }; DataFlash.WriteBlock(&pkt2, sizeof(pkt2)); } #endif #if COMPASS_MAX_INSTANCES > 2 if (compass.get_count() > 2) { const Vector3f &mag3_offsets = compass.get_offsets(2); const Vector3f &mag3_motor_offsets = compass.get_motor_offsets(2); const Vector3f &mag3 = compass.get_field(2); struct log_Compass pkt3 = { LOG_PACKET_HEADER_INIT(LOG_COMPASS3_MSG), time_ms : hal.scheduler->millis(), mag_x : (int16_t)mag3.x, mag_y : (int16_t)mag3.y, mag_z : (int16_t)mag3.z, offset_x : (int16_t)mag3_offsets.x, offset_y : (int16_t)mag3_offsets.y, offset_z : (int16_t)mag3_offsets.z, motor_offset_x : (int16_t)mag3_motor_offsets.x, motor_offset_y : (int16_t)mag3_motor_offsets.y, motor_offset_z : (int16_t)mag3_motor_offsets.z }; DataFlash.WriteBlock(&pkt3, sizeof(pkt3)); } #endif } struct PACKED log_Performance { LOG_PACKET_HEADER; uint16_t num_long_running; uint16_t num_loops; uint32_t max_time; int16_t pm_test; uint8_t i2c_lockup_count; uint16_t ins_error_count; uint8_t inav_error_count; }; // Write a performance monitoring packet static void Log_Write_Performance() { struct log_Performance pkt = { LOG_PACKET_HEADER_INIT(LOG_PERFORMANCE_MSG), num_long_running : perf_info_get_num_long_running(), num_loops : perf_info_get_num_loops(), max_time : perf_info_get_max_time(), pm_test : pmTest1, i2c_lockup_count : hal.i2c->lockup_count(), ins_error_count : ins.error_count(), inav_error_count : inertial_nav.error_count() }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // Write a mission command. Total length : 36 bytes static void Log_Write_Cmd(const AP_Mission::Mission_Command &cmd) { mavlink_mission_item_t mav_cmd = {}; AP_Mission::mission_cmd_to_mavlink(cmd,mav_cmd); DataFlash.Log_Write_MavCmd(mission.num_commands(),mav_cmd); } // Write an attitude packet static void Log_Write_Attitude() { Vector3f targets = attitude_control.angle_ef_targets(); DataFlash.Log_Write_Attitude(ahrs, targets); #if AP_AHRS_NAVEKF_AVAILABLE #if OPTFLOW == ENABLED DataFlash.Log_Write_EKF(ahrs,optflow.enabled()); #else DataFlash.Log_Write_EKF(ahrs,false); #endif DataFlash.Log_Write_AHRS2(ahrs); #endif #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL sitl.Log_Write_SIMSTATE(DataFlash); #endif } struct PACKED log_Mode { LOG_PACKET_HEADER; uint8_t mode; int16_t throttle_cruise; }; // Write a mode packet static void Log_Write_Mode(uint8_t mode) { struct log_Mode pkt = { LOG_PACKET_HEADER_INIT(LOG_MODE_MSG), mode : mode, throttle_cruise : g.throttle_cruise, }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Startup { LOG_PACKET_HEADER; }; // Write Startup packet static void Log_Write_Startup() { struct log_Startup pkt = { LOG_PACKET_HEADER_INIT(LOG_STARTUP_MSG) }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Event { LOG_PACKET_HEADER; uint8_t id; }; // Wrote an event packet static void Log_Write_Event(uint8_t id) { if (should_log(MASK_LOG_ANY)) { struct log_Event pkt = { LOG_PACKET_HEADER_INIT(LOG_EVENT_MSG), id : id }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_Int16t { LOG_PACKET_HEADER; uint8_t id; int16_t data_value; }; // Write an int16_t data packet static void Log_Write_Data(uint8_t id, int16_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_Int16t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_INT16_MSG), id : id, data_value : value }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_UInt16t { LOG_PACKET_HEADER; uint8_t id; uint16_t data_value; }; // Write an uint16_t data packet static void Log_Write_Data(uint8_t id, uint16_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_UInt16t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_UINT16_MSG), id : id, data_value : value }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_Int32t { LOG_PACKET_HEADER; uint8_t id; int32_t data_value; }; // Write an int32_t data packet static void Log_Write_Data(uint8_t id, int32_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_Int32t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_INT32_MSG), id : id, data_value : value }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_UInt32t { LOG_PACKET_HEADER; uint8_t id; uint32_t data_value; }; // Write a uint32_t data packet static void Log_Write_Data(uint8_t id, uint32_t value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_UInt32t pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_UINT32_MSG), id : id, data_value : value }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Data_Float { LOG_PACKET_HEADER; uint8_t id; float data_value; }; // Write a float data packet static void Log_Write_Data(uint8_t id, float value) { if (should_log(MASK_LOG_ANY)) { struct log_Data_Float pkt = { LOG_PACKET_HEADER_INIT(LOG_DATA_FLOAT_MSG), id : id, data_value : value }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } } struct PACKED log_Error { LOG_PACKET_HEADER; uint8_t sub_system; uint8_t error_code; }; // Write an error packet static void Log_Write_Error(uint8_t sub_system, uint8_t error_code) { struct log_Error pkt = { LOG_PACKET_HEADER_INIT(LOG_ERROR_MSG), sub_system : sub_system, error_code : error_code, }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } static void Log_Write_Baro(void) { DataFlash.Log_Write_Baro(barometer); } static const struct LogStructure log_structure[] PROGMEM = { LOG_COMMON_STRUCTURES, #if AUTOTUNE_ENABLED == ENABLED { LOG_AUTOTUNE_MSG, sizeof(log_AutoTune), "ATUN", "BBfffff", "Axis,TuneStep,RateMin,RateMax,RPGain,RDGain,SPGain" }, { LOG_AUTOTUNEDETAILS_MSG, sizeof(log_AutoTuneDetails), "ATDE", "cf", "Angle,Rate" }, #endif { LOG_OPTFLOW_MSG, sizeof(log_Optflow), "OF", "IBffff", "TimeMS,Qual,flowX,flowY,bodyX,bodyY" }, { LOG_NAV_TUNING_MSG, sizeof(log_Nav_Tuning), "NTUN", "Iffffffffff", "TimeMS,DPosX,DPosY,PosX,PosY,DVelX,DVelY,VelX,VelY,DAccX,DAccY" }, { LOG_CONTROL_TUNING_MSG, sizeof(log_Control_Tuning), "CTUN", "Ihhhffecchh", "TimeMS,ThrIn,AngBst,ThrOut,DAlt,Alt,BarAlt,DSAlt,SAlt,DCRt,CRt" }, { LOG_COMPASS_MSG, sizeof(log_Compass), "MAG", "Ihhhhhhhhh", "TimeMS,MagX,MagY,MagZ,OfsX,OfsY,OfsZ,MOfsX,MOfsY,MOfsZ" }, #if COMPASS_MAX_INSTANCES > 1 { LOG_COMPASS2_MSG, sizeof(log_Compass), "MAG2","Ihhhhhhhhh", "TimeMS,MagX,MagY,MagZ,OfsX,OfsY,OfsZ,MOfsX,MOfsY,MOfsZ" }, #endif #if COMPASS_MAX_INSTANCES > 2 { LOG_COMPASS3_MSG, sizeof(log_Compass), "MAG3","Ihhhhhhhhh", "TimeMS,MagX,MagY,MagZ,OfsX,OfsY,OfsZ,MOfsX,MOfsY,MOfsZ" }, #endif { LOG_PERFORMANCE_MSG, sizeof(log_Performance), "PM", "HHIhBHB", "NLon,NLoop,MaxT,PMT,I2CErr,INSErr,INAVErr" }, { LOG_MODE_MSG, sizeof(log_Mode), "MODE", "Mh", "Mode,ThrCrs" }, { LOG_STARTUP_MSG, sizeof(log_Startup), "STRT", "", "" }, { LOG_EVENT_MSG, sizeof(log_Event), "EV", "B", "Id" }, { LOG_DATA_INT16_MSG, sizeof(log_Data_Int16t), "D16", "Bh", "Id,Value" }, { LOG_DATA_UINT16_MSG, sizeof(log_Data_UInt16t), "DU16", "BH", "Id,Value" }, { LOG_DATA_INT32_MSG, sizeof(log_Data_Int32t), "D32", "Bi", "Id,Value" }, { LOG_DATA_UINT32_MSG, sizeof(log_Data_UInt32t), "DU32", "BI", "Id,Value" }, { LOG_DATA_FLOAT_MSG, sizeof(log_Data_Float), "DFLT", "Bf", "Id,Value" }, { LOG_ERROR_MSG, sizeof(log_Error), "ERR", "BB", "Subsys,ECode" }, }; #if CLI_ENABLED == ENABLED // Read the DataFlash log memory static void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page) { cliSerial->printf_P(PSTR("\n" FIRMWARE_STRING "\nFree RAM: %u\n" "\nFrame: " FRAME_CONFIG_STRING "\n"), (unsigned) hal.util->available_memory()); cliSerial->println_P(PSTR(HAL_BOARD_NAME)); DataFlash.LogReadProcess(log_num, start_page, end_page, print_flight_mode, cliSerial); } #endif // CLI_ENABLED // start a new log static void start_logging() { if (g.log_bitmask != 0) { if (!ap.logging_started) { ap.logging_started = true; in_mavlink_delay = true; DataFlash.StartNewLog(); in_mavlink_delay = false; DataFlash.Log_Write_Message_P(PSTR(FIRMWARE_STRING)); #if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION) DataFlash.Log_Write_Message_P(PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION)); #endif // write system identifier as well if available char sysid[40]; if (hal.util->get_system_id(sysid)) { DataFlash.Log_Write_Message(sysid); } DataFlash.Log_Write_Message_P(PSTR("Frame: " FRAME_CONFIG_STRING)); // log the flight mode Log_Write_Mode(control_mode); } // enable writes DataFlash.EnableWrites(true); } } #else // LOGGING_ENABLED static void Log_Write_Startup() {} static void Log_Write_Mode(uint8_t mode) {} #if AUTOTUNE_ENABLED == ENABLED static void Log_Write_AutoTune(uint8_t axis, uint8_t tune_step, float rate_min, float rate_max, float new_gain_rp, float new_gain_rd, float new_gain_sp) {} static void Log_Write_AutoTuneDetails(int16_t angle_cd, float rate_cds) {} #endif static void Log_Write_Current() {} static void Log_Write_Compass() {} static void Log_Write_Attitude() {} static void Log_Write_Data(uint8_t id, int16_t value){} static void Log_Write_Data(uint8_t id, uint16_t value){} static void Log_Write_Data(uint8_t id, int32_t value){} static void Log_Write_Data(uint8_t id, uint32_t value){} static void Log_Write_Data(uint8_t id, float value){} static void Log_Write_Event(uint8_t id){} static void Log_Write_Optflow() {} static void Log_Write_Nav_Tuning() {} static void Log_Write_Control_Tuning() {} static void Log_Write_Performance() {} static void Log_Write_Cmd(const AP_Mission::Mission_Command &cmd) {} static void Log_Write_Error(uint8_t sub_system, uint8_t error_code) {} static void Log_Write_Baro(void) {} static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { return 0; } #endif // LOGGING_DISABLED