/* Inspired by work done here https://github.com/PX4/Firmware/tree/master/src/drivers/frsky_telemetry from Stefan Rado https://github.com/opentx/opentx/tree/2.3/radio/src/telemetry from the OpenTX team This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* FRSKY Telemetry library */ #include "AP_Frsky_Telem.h" #include #include #include #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; AP_Frsky_Telem *AP_Frsky_Telem::singleton; AP_Frsky_Telem::AP_Frsky_Telem(bool _external_data) : _statustext_queue(FRSKY_TELEM_PAYLOAD_STATUS_CAPACITY), use_external_data(_external_data) { singleton = this; } AP_Frsky_Telem::~AP_Frsky_Telem(void) { singleton = nullptr; } /* setup ready for passthrough telem */ void AP_Frsky_Telem::setup_passthrough(void) { // make frsky_telemetry available to GCS_MAVLINK (used to queue statustext messages from GCS_MAVLINK) // add firmware and frame info to message queue const char* _frame_string = gcs().frame_string(); if (_frame_string == nullptr) { queue_message(MAV_SEVERITY_INFO, AP::fwversion().fw_string); } else { char firmware_buf[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1]; snprintf(firmware_buf, sizeof(firmware_buf), "%s %s", AP::fwversion().fw_string, _frame_string); queue_message(MAV_SEVERITY_INFO, firmware_buf); } // initialize packet weights for the WFQ scheduler // weight[i] = 1/_passthrough.packet_period[i] // rate[i] = LinkRate * ( weight[i] / (sum(weight[1-n])) ) _passthrough.packet_weight[0] = 35; // 0x5000 status text (dynamic) _passthrough.packet_weight[1] = 50; // 0x5006 Attitude and range (dynamic) _passthrough.packet_weight[2] = 550; // 0x800 GPS lat (600 with 1 sensor) _passthrough.packet_weight[3] = 550; // 0x800 GPS lon (600 with 1 sensor) _passthrough.packet_weight[4] = 400; // 0x5005 Vel and Yaw _passthrough.packet_weight[5] = 700; // 0x5001 AP status _passthrough.packet_weight[6] = 700; // 0x5002 GPS Status _passthrough.packet_weight[7] = 400; // 0x5004 Home _passthrough.packet_weight[8] = 1300; // 0x5008 Battery 2 status _passthrough.packet_weight[9] = 1300; // 0x5003 Battery 1 status _passthrough.packet_weight[10] = 1700; // 0x5007 parameters } /* * init - perform required initialisation */ bool AP_Frsky_Telem::init() { const AP_SerialManager &serial_manager = AP::serialmanager(); // check for protocol configured for a serial port - only the first serial port with one of these protocols will then run (cannot have FrSky on multiple serial ports) if ((_port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_FrSky_D, 0))) { _protocol = AP_SerialManager::SerialProtocol_FrSky_D; // FrSky D protocol (D-receivers) } else if ((_port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_FrSky_SPort, 0))) { _protocol = AP_SerialManager::SerialProtocol_FrSky_SPort; // FrSky SPort protocol (X-receivers) } else if ((_port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_FrSky_SPort_Passthrough, 0))) { _protocol = AP_SerialManager::SerialProtocol_FrSky_SPort_Passthrough; // FrSky SPort and SPort Passthrough (OpenTX) protocols (X-receivers) setup_passthrough(); } if (_port != nullptr) { if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_Frsky_Telem::loop, void), "FrSky", 1024, AP_HAL::Scheduler::PRIORITY_RCIN, 1)) { return false; } // we don't want flow control for either protocol _port->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE); return true; } return false; } void AP_Frsky_Telem::update_avg_packet_rate() { uint32_t poll_now = AP_HAL::millis(); _passthrough.avg_packet_counter++; if (poll_now - _passthrough.last_poll_timer > 1000) { //average in last 1000ms // initialize if (_passthrough.avg_packet_rate == 0) _passthrough.avg_packet_rate = _passthrough.avg_packet_counter; // moving average _passthrough.avg_packet_rate = (uint8_t)_passthrough.avg_packet_rate * 0.75 + _passthrough.avg_packet_counter * 0.25; // reset _passthrough.last_poll_timer = poll_now; _passthrough.avg_packet_counter = 0; } } /* * WFQ scheduler * for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) */ void AP_Frsky_Telem::passthrough_wfq_adaptive_scheduler(uint8_t prev_byte) { uint32_t now = AP_HAL::millis(); uint8_t max_delay_idx = TIME_SLOT_MAX; float max_delay = 0; float delay = 0; bool packet_ready = false; // build message queue for sensor_status_flags check_sensor_status_flags(); // build message queue for ekf_status check_ekf_status(); // dynamic priorities if (!_statustext_queue.empty()) { _passthrough.packet_weight[0] = 45; // messages _passthrough.packet_weight[1] = 80; // attitude } else { _passthrough.packet_weight[0] = 5000; // messages _passthrough.packet_weight[1] = 45; // attitude } // search the packet with the longest delay after the scheduled time for (int i=0;i(_passthrough.packet_weight[i]); // use >= so with equal delays we choose the packet with lowest priority // this is ensured by the packets being sorted by desc frequency // apply the rate limiter if (delay >= max_delay && ((now - _passthrough.packet_timer[i]) >= _sport_config.packet_min_period[i])) { switch (i) { case 0: packet_ready = !_statustext_queue.empty(); break; case 5: packet_ready = gcs().vehicle_initialised(); break; case 8: packet_ready = AP::battery().num_instances() > 1; break; default: packet_ready = true; break; } if (packet_ready) { max_delay = delay; max_delay_idx = i; } } } _passthrough.packet_timer[max_delay_idx] = AP_HAL::millis(); // send packet switch (max_delay_idx) { case TIME_SLOT_MAX: // nothing to send break; case 0: // 0x5000 status text if (get_next_msg_chunk()) { send_uint32(SPORT_DATA_FRAME, DIY_FIRST_ID, _msg_chunk.chunk); } break; case 1: // 0x5006 Attitude and range send_uint32(SPORT_DATA_FRAME, DIY_FIRST_ID+6, calc_attiandrng()); break; case 2: // 0x800 GPS lat // sample both lat and lon at the same time send_uint32(SPORT_DATA_FRAME, GPS_LONG_LATI_FIRST_ID, calc_gps_latlng(&_passthrough.send_latitude)); // gps latitude or longitude _passthrough.gps_lng_sample = calc_gps_latlng(&_passthrough.send_latitude); // force the scheduler to select GPS lon as packet that's been waiting the most // this guarantees that gps coords are sent at max // _passthrough.avg_polling_period*number_of_downlink_sensors time separation _passthrough.packet_timer[3] = _passthrough.packet_timer[2] - 10000; break; case 3: // 0x800 GPS lon send_uint32(SPORT_DATA_FRAME, GPS_LONG_LATI_FIRST_ID, _passthrough.gps_lng_sample); // gps longitude break; case 4: // 0x5005 Vel and Yaw send_uint32(SPORT_DATA_FRAME, DIY_FIRST_ID+5, calc_velandyaw()); break; case 5: // 0x5001 AP status send_uint32(SPORT_DATA_FRAME, DIY_FIRST_ID+1, calc_ap_status()); break; case 6: // 0x5002 GPS Status send_uint32(SPORT_DATA_FRAME, DIY_FIRST_ID+2, calc_gps_status()); break; case 7: // 0x5004 Home send_uint32(SPORT_DATA_FRAME, DIY_FIRST_ID+4, calc_home()); break; case 8: // 0x5008 Battery 2 status send_uint32(SPORT_DATA_FRAME, DIY_FIRST_ID+8, calc_batt(1)); break; case 9: // 0x5003 Battery 1 status send_uint32(SPORT_DATA_FRAME, DIY_FIRST_ID+3, calc_batt(0)); break; case 10: // 0x5007 parameters send_uint32(SPORT_DATA_FRAME, DIY_FIRST_ID+7, calc_param()); break; } } /* * send telemetry data * for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) */ void AP_Frsky_Telem::send_SPort_Passthrough(void) { int16_t numc; numc = _port->available(); // check if available is negative if (numc < 0) { return; } // this is the constant for hub data frame if (_port->txspace() < 19) { return; } // keep only the last two bytes of the data found in the serial buffer, as we shouldn't respond to old poll requests uint8_t prev_byte = 0; for (int16_t i = 0; i < numc; i++) { prev_byte = _passthrough.new_byte; _passthrough.new_byte = _port->read(); } if (prev_byte == START_STOP_SPORT) { if (_passthrough.new_byte == SENSOR_ID_28) { // byte 0x7E is the header of each poll request update_avg_packet_rate(); passthrough_wfq_adaptive_scheduler(prev_byte); } } } /* * send telemetry data * for FrSky SPort protocol (X-receivers) */ void AP_Frsky_Telem::send_SPort(void) { const AP_AHRS &_ahrs = AP::ahrs(); int16_t numc; numc = _port->available(); // check if available is negative if (numc < 0) { return; } // this is the constant for hub data frame if (_port->txspace() < 19) { return; } for (int16_t i = 0; i < numc; i++) { int16_t readbyte = _port->read(); if (_SPort.sport_status == false) { if (readbyte == START_STOP_SPORT) { _SPort.sport_status = true; } } else { const AP_BattMonitor &_battery = AP::battery(); switch(readbyte) { case SENSOR_ID_FAS: switch (_SPort.fas_call) { case 0: send_uint32(SPORT_DATA_FRAME, DATA_ID_FUEL, (uint16_t)roundf(_battery.capacity_remaining_pct())); // send battery remaining break; case 1: send_uint32(SPORT_DATA_FRAME, DATA_ID_VFAS, (uint16_t)roundf(_battery.voltage() * 10.0f)); // send battery voltage break; case 2: { float current; if (!_battery.current_amps(current)) { current = 0; } send_uint32(SPORT_DATA_FRAME, DATA_ID_CURRENT, (uint16_t)roundf(current * 10.0f)); // send current consumption break; } break; } if (_SPort.fas_call++ > 2) _SPort.fas_call = 0; break; case SENSOR_ID_GPS: switch (_SPort.gps_call) { case 0: calc_gps_position(); // gps data is not recalculated until all of it has been sent send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_LAT_BP, _gps.latdddmm); // send gps lattitude degree and minute integer part break; case 1: send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_LAT_AP, _gps.latmmmm); // send gps lattitude minutes decimal part break; case 2: send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_LAT_NS, _gps.lat_ns); // send gps North / South information break; case 3: send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_LONG_BP, _gps.londddmm); // send gps longitude degree and minute integer part break; case 4: send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_LONG_AP, _gps.lonmmmm); // send gps longitude minutes decimal part break; case 5: send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_LONG_EW, _gps.lon_ew); // send gps East / West information break; case 6: send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_SPEED_BP, _gps.speed_in_meter); // send gps speed integer part break; case 7: send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_SPEED_AP, _gps.speed_in_centimeter); // send gps speed decimal part break; case 8: send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_ALT_BP, _gps.alt_gps_meters); // send gps altitude integer part break; case 9: send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_ALT_AP, _gps.alt_gps_cm); // send gps altitude decimals break; case 10: send_uint32(SPORT_DATA_FRAME, DATA_ID_GPS_COURS_BP, (uint16_t)((_ahrs.yaw_sensor / 100) % 360)); // send heading in degree based on AHRS and not GPS break; } if (_SPort.gps_call++ > 10) _SPort.gps_call = 0; break; case SENSOR_ID_VARIO: switch (_SPort.vario_call) { case 0 : calc_nav_alt(); // nav altitude is not recalculated until all of it has been sent send_uint32(SPORT_DATA_FRAME, DATA_ID_BARO_ALT_BP, _gps.alt_nav_meters); // send altitude integer part break; case 1: send_uint32(SPORT_DATA_FRAME, DATA_ID_BARO_ALT_AP, _gps.alt_nav_cm); // send altitude decimal part break; } if (_SPort.vario_call++ > 1) _SPort.vario_call = 0; break; case SENSOR_ID_SP2UR: switch (_SPort.various_call) { case 0 : send_uint32(SPORT_DATA_FRAME, DATA_ID_TEMP2, (uint16_t)(AP::gps().num_sats() * 10 + AP::gps().status())); // send GPS status and number of satellites as num_sats*10 + status (to fit into a uint8_t) break; case 1: send_uint32(SPORT_DATA_FRAME, DATA_ID_TEMP1, gcs().custom_mode()); // send flight mode break; } if (_SPort.various_call++ > 1) _SPort.various_call = 0; break; } _SPort.sport_status = false; } } } /* * send frame1 and frame2 telemetry data * one frame (frame1) is sent every 200ms with baro alt, nb sats, batt volts and amp, control_mode * a second frame (frame2) is sent every second (1000ms) with gps position data, and ahrs.yaw_sensor heading (instead of GPS heading) * for FrSky D protocol (D-receivers) */ void AP_Frsky_Telem::send_D(void) { const AP_AHRS &_ahrs = AP::ahrs(); const AP_BattMonitor &_battery = AP::battery(); uint32_t now = AP_HAL::millis(); // send frame1 every 200ms if (now - _D.last_200ms_frame >= 200) { _D.last_200ms_frame = now; send_uint16(DATA_ID_TEMP2, (uint16_t)(AP::gps().num_sats() * 10 + AP::gps().status())); // send GPS status and number of satellites as num_sats*10 + status (to fit into a uint8_t) send_uint16(DATA_ID_TEMP1, gcs().custom_mode()); // send flight mode send_uint16(DATA_ID_FUEL, (uint16_t)roundf(_battery.capacity_remaining_pct())); // send battery remaining send_uint16(DATA_ID_VFAS, (uint16_t)roundf(_battery.voltage() * 10.0f)); // send battery voltage float current; if (!_battery.current_amps(current)) { current = 0; } send_uint16(DATA_ID_CURRENT, (uint16_t)roundf(current * 10.0f)); // send current consumption calc_nav_alt(); send_uint16(DATA_ID_BARO_ALT_BP, _gps.alt_nav_meters); // send nav altitude integer part send_uint16(DATA_ID_BARO_ALT_AP, _gps.alt_nav_cm); // send nav altitude decimal part } // send frame2 every second if (now - _D.last_1000ms_frame >= 1000) { _D.last_1000ms_frame = now; send_uint16(DATA_ID_GPS_COURS_BP, (uint16_t)((_ahrs.yaw_sensor / 100) % 360)); // send heading in degree based on AHRS and not GPS calc_gps_position(); if (AP::gps().status() >= 3) { send_uint16(DATA_ID_GPS_LAT_BP, _gps.latdddmm); // send gps lattitude degree and minute integer part send_uint16(DATA_ID_GPS_LAT_AP, _gps.latmmmm); // send gps lattitude minutes decimal part send_uint16(DATA_ID_GPS_LAT_NS, _gps.lat_ns); // send gps North / South information send_uint16(DATA_ID_GPS_LONG_BP, _gps.londddmm); // send gps longitude degree and minute integer part send_uint16(DATA_ID_GPS_LONG_AP, _gps.lonmmmm); // send gps longitude minutes decimal part send_uint16(DATA_ID_GPS_LONG_EW, _gps.lon_ew); // send gps East / West information send_uint16(DATA_ID_GPS_SPEED_BP, _gps.speed_in_meter); // send gps speed integer part send_uint16(DATA_ID_GPS_SPEED_AP, _gps.speed_in_centimeter); // send gps speed decimal part send_uint16(DATA_ID_GPS_ALT_BP, _gps.alt_gps_meters); // send gps altitude integer part send_uint16(DATA_ID_GPS_ALT_AP, _gps.alt_gps_cm); // send gps altitude decimal part } } } /* thread to loop handling bytes */ void AP_Frsky_Telem::loop(void) { // initialise uart (this must be called from within tick b/c the UART begin must be called from the same thread as it is used from) if (_protocol == AP_SerialManager::SerialProtocol_FrSky_D) { // FrSky D protocol (D-receivers) _port->begin(AP_SERIALMANAGER_FRSKY_D_BAUD, AP_SERIALMANAGER_FRSKY_BUFSIZE_RX, AP_SERIALMANAGER_FRSKY_BUFSIZE_TX); } else { // FrSky SPort and SPort Passthrough (OpenTX) protocols (X-receivers) _port->begin(AP_SERIALMANAGER_FRSKY_SPORT_BAUD, AP_SERIALMANAGER_FRSKY_BUFSIZE_RX, AP_SERIALMANAGER_FRSKY_BUFSIZE_TX); } _port->set_unbuffered_writes(true); while (true) { hal.scheduler->delay(1); if (_protocol == AP_SerialManager::SerialProtocol_FrSky_D) { // FrSky D protocol (D-receivers) send_D(); } else if (_protocol == AP_SerialManager::SerialProtocol_FrSky_SPort) { // FrSky SPort protocol (X-receivers) send_SPort(); } else if (_protocol == AP_SerialManager::SerialProtocol_FrSky_SPort_Passthrough) { // FrSky SPort Passthrough (OpenTX) protocol (X-receivers) send_SPort_Passthrough(); } } } /* * build up the frame's crc * for FrSky SPort protocol (X-receivers) */ void AP_Frsky_Telem::calc_crc(uint8_t byte) { _crc += byte; //0-1FF _crc += _crc >> 8; //0-100 _crc &= 0xFF; } /* * send the frame's crc at the end of the frame * for FrSky SPort protocol (X-receivers) */ void AP_Frsky_Telem::send_crc(void) { send_byte(0xFF - _crc); _crc = 0; } /* send 1 byte and do byte stuffing */ void AP_Frsky_Telem::send_byte(uint8_t byte) { if (_protocol == AP_SerialManager::SerialProtocol_FrSky_D) { // FrSky D protocol (D-receivers) if (byte == START_STOP_D) { _port->write(0x5D); _port->write(0x3E); } else if (byte == BYTESTUFF_D) { _port->write(0x5D); _port->write(0x3D); } else { _port->write(byte); } } else { // FrSky SPort protocol (X-receivers) if (byte == START_STOP_SPORT) { _port->write(0x7D); _port->write(0x5E); } else if (byte == BYTESTUFF_SPORT) { _port->write(0x7D); _port->write(0x5D); } else { _port->write(byte); } calc_crc(byte); } } /* * send one uint32 frame of FrSky data - for FrSky SPort protocol (X-receivers) */ void AP_Frsky_Telem::send_uint32(uint8_t frame, uint16_t id, uint32_t data) { if (use_external_data) { external_data.frame = frame; external_data.appid = id; external_data.data = data; external_data.pending = true; return; } send_byte(frame); // frame type uint8_t *bytes = (uint8_t*)&id; send_byte(bytes[0]); // LSB send_byte(bytes[1]); // MSB bytes = (uint8_t*)&data; send_byte(bytes[0]); // LSB send_byte(bytes[1]); send_byte(bytes[2]); send_byte(bytes[3]); // MSB send_crc(); } /* * send one uint16 frame of FrSky data - for FrSky D protocol (D-receivers) */ void AP_Frsky_Telem::send_uint16(uint16_t id, uint16_t data) { _port->write(START_STOP_D); // send a 0x5E start byte uint8_t *bytes = (uint8_t*)&id; send_byte(bytes[0]); bytes = (uint8_t*)&data; send_byte(bytes[0]); // LSB send_byte(bytes[1]); // MSB } /* * grabs one "chunk" (4 bytes) of the queued message to be transmitted * for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) */ bool AP_Frsky_Telem::get_next_msg_chunk(void) { if (_statustext_queue.empty()) { return false; } if (_msg_chunk.repeats == 0) { // if it's the first time get_next_msg_chunk is called for a given chunk uint8_t character = 0; _msg_chunk.chunk = 0; // clear the 4 bytes of the chunk buffer for (int i = 3; i > -1 && _msg_chunk.char_index < sizeof(_statustext_queue[0]->text); i--) { character = _statustext_queue[0]->text[_msg_chunk.char_index++]; if (!character) { break; } _msg_chunk.chunk |= character << i * 8; } if (!character || (_msg_chunk.char_index == sizeof(_statustext_queue[0]->text))) { // we've reached the end of the message (string terminated by '\0' or last character of the string has been processed) _msg_chunk.char_index = 0; // reset index to get ready to process the next message // add severity which is sent as the MSB of the last three bytes of the last chunk (bits 24, 16, and 8) since a character is on 7 bits _msg_chunk.chunk |= (_statustext_queue[0]->severity & 0x4)<<21; _msg_chunk.chunk |= (_statustext_queue[0]->severity & 0x2)<<14; _msg_chunk.chunk |= (_statustext_queue[0]->severity & 0x1)<<7; } } // repeat each message chunk 3 times to ensure transmission // on slow links reduce the number of duplicate chunks uint8_t extra_chunks = 2; if (_passthrough.avg_packet_rate < 20) { // with 3 or more extra frsky sensors on the bus // send messages only once extra_chunks = 0; } else if (_passthrough.avg_packet_rate < 30) { // with 1 or 2 extra frsky sensors on the bus // send messages twice extra_chunks = 1; } if (_msg_chunk.repeats++ > extra_chunks ) { _msg_chunk.repeats = 0; if (_msg_chunk.char_index == 0) { // if we're ready for the next message _statustext_queue.remove(0); } } return true; } /* * add message to message cue for transmission through FrSky link * for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) */ void AP_Frsky_Telem::queue_message(MAV_SEVERITY severity, const char *text) { mavlink_statustext_t statustext{}; statustext.severity = severity; strncpy(statustext.text, text, sizeof(statustext.text)); // The force push will ensure comm links do not block other comm links forever if they fail. // If we push to a full buffer then we overwrite the oldest entry, effectively removing the // block but not until the buffer fills up. _statustext_queue.push_force(statustext); } /* * add sensor_status_flags information to message cue, normally passed as sys_status mavlink messages to the GCS, for transmission through FrSky link * for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) */ void AP_Frsky_Telem::check_sensor_status_flags(void) { uint32_t now = AP_HAL::millis(); const uint32_t _sensor_status_flags = sensor_status_flags(); if ((now - check_sensor_status_timer) >= 5000) { // prevent repeating any system_status messages unless 5 seconds have passed // only one error is reported at a time (in order of preference). Same setup and displayed messages as Mission Planner. if ((_sensor_status_flags & MAV_SYS_STATUS_SENSOR_GPS) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Bad GPS Health"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_SENSOR_3D_GYRO) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Bad Gyro Health"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_SENSOR_3D_ACCEL) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Bad Accel Health"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_SENSOR_3D_MAG) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Bad Compass Health"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Bad Baro Health"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_SENSOR_LASER_POSITION) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Bad LiDAR Health"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Bad OptFlow Health"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_TERRAIN) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Bad or No Terrain Data"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_GEOFENCE) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Geofence Breach"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_AHRS) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Bad AHRS"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_SENSOR_RC_RECEIVER) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "No RC Receiver"); check_sensor_status_timer = now; } else if ((_sensor_status_flags & MAV_SYS_STATUS_LOGGING) > 0) { queue_message(MAV_SEVERITY_CRITICAL, "Bad Logging"); check_sensor_status_timer = now; } } } /* * add innovation variance information to message cue, normally passed as ekf_status_report mavlink messages to the GCS, for transmission through FrSky link * for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) */ void AP_Frsky_Telem::check_ekf_status(void) { const AP_AHRS &_ahrs = AP::ahrs(); // get variances float velVar, posVar, hgtVar, tasVar; Vector3f magVar; Vector2f offset; if (_ahrs.get_variances(velVar, posVar, hgtVar, magVar, tasVar, offset)) { uint32_t now = AP_HAL::millis(); if ((now - check_ekf_status_timer) >= 10000) { // prevent repeating any ekf_status message unless 10 seconds have passed // multiple errors can be reported at a time. Same setup as Mission Planner. if (velVar >= 1) { queue_message(MAV_SEVERITY_CRITICAL, "Error velocity variance"); check_ekf_status_timer = now; } if (posVar >= 1) { queue_message(MAV_SEVERITY_CRITICAL, "Error pos horiz variance"); check_ekf_status_timer = now; } if (hgtVar >= 1) { queue_message(MAV_SEVERITY_CRITICAL, "Error pos vert variance"); check_ekf_status_timer = now; } if (magVar.length() >= 1) { queue_message(MAV_SEVERITY_CRITICAL, "Error compass variance"); check_ekf_status_timer = now; } if (tasVar >= 1) { queue_message(MAV_SEVERITY_CRITICAL, "Error terrain alt variance"); check_ekf_status_timer = now; } } } } /* * prepare parameter data * for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) */ uint32_t AP_Frsky_Telem::calc_param(void) { const AP_BattMonitor &_battery = AP::battery(); uint32_t param = 0; // cycle through paramIDs if (_paramID >= 5) { _paramID = 0; } _paramID++; switch(_paramID) { case 1: param = gcs().frame_type(); // see MAV_TYPE in Mavlink definition file common.h break; case 2: // was used to send the battery failsafe voltage case 3: // was used to send the battery failsafe capacity in mAh break; case 4: param = (uint32_t)roundf(_battery.pack_capacity_mah(0)); // battery pack capacity in mAh break; case 5: param = (uint32_t)roundf(_battery.pack_capacity_mah(1)); // battery pack capacity in mAh break; } //Reserve first 8 bits for param ID, use other 24 bits to store parameter value param = (_paramID << PARAM_ID_OFFSET) | (param & PARAM_VALUE_LIMIT); return param; } /* * prepare gps latitude/longitude data * for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) */ uint32_t AP_Frsky_Telem::calc_gps_latlng(bool *send_latitude) { uint32_t latlng; const Location &loc = AP::gps().location(0); // use the first gps instance (same as in send_mavlink_gps_raw) // alternate between latitude and longitude if ((*send_latitude) == true) { if (loc.lat < 0) { latlng = ((labs(loc.lat)/100)*6) | 0x40000000; } else { latlng = ((labs(loc.lat)/100)*6); } (*send_latitude) = false; } else { if (loc.lng < 0) { latlng = ((labs(loc.lng)/100)*6) | 0xC0000000; } else { latlng = ((labs(loc.lng)/100)*6) | 0x80000000; } (*send_latitude) = true; } return latlng; } /* * prepare gps status data * for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) */ uint32_t AP_Frsky_Telem::calc_gps_status(void) { const AP_GPS &gps = AP::gps(); uint32_t gps_status; // number of GPS satellites visible (limit to 15 (0xF) since the value is stored on 4 bits) gps_status = (gps.num_sats() < GPS_SATS_LIMIT) ? gps.num_sats() : GPS_SATS_LIMIT; // GPS receiver status (limit to 0-3 (0x3) since the value is stored on 2 bits: NO_GPS = 0, NO_FIX = 1, GPS_OK_FIX_2D = 2, GPS_OK_FIX_3D or GPS_OK_FIX_3D_DGPS or GPS_OK_FIX_3D_RTK_FLOAT or GPS_OK_FIX_3D_RTK_FIXED = 3) gps_status |= ((gps.status() < GPS_STATUS_LIMIT) ? gps.status() : GPS_STATUS_LIMIT)< GPS_STATUS_LIMIT) ? gps.status()-GPS_STATUS_LIMIT : 0)< 82° uint8_t imu_temp = (uint8_t) roundf(constrain_float(AP::ins().get_temperature(0), AP_IMU_TEMP_MIN, AP_IMU_TEMP_MAX) - AP_IMU_TEMP_MIN); // control/flight mode number (limit to 31 (0x1F) since the value is stored on 5 bits) ap_status = (uint8_t)((gcs().custom_mode()+1) & AP_CONTROL_MODE_LIMIT); // simple/super simple modes flags ap_status |= (uint8_t)(gcs().simple_input_active())<printf("flying=%d\n",AP_Notify::flags.flying); //hal.console->printf("ap_status=%08X\n",ap_status); return ap_status; } /* * prepare home position related data * for FrSky SPort Passthrough (OpenTX) protocol (X-receivers) */ uint32_t AP_Frsky_Telem::calc_home(void) { const AP_AHRS &_ahrs = AP::ahrs(); uint32_t home = 0; Location loc; float _relative_home_altitude = 0; if (_ahrs.get_position(loc)) { // check home_loc is valid const Location &home_loc = _ahrs.get_home(); if (home_loc.lat != 0 || home_loc.lng != 0) { // distance between vehicle and home_loc in meters home = prep_number(roundf(home_loc.get_distance(loc)), 3, 2); // angle from front of vehicle to the direction of home_loc in 3 degree increments (just in case, limit to 127 (0x7F) since the value is stored on 7 bits) home |= (((uint8_t)roundf(loc.get_bearing_to(home_loc) * 0.00333f)) & HOME_BEARING_LIMIT)<enabled()) { velandyaw |= prep_number(roundf(aspeed->get_airspeed() * 10), 2, 1)<distance_cm_orient(ROTATION_PITCH_270) : 0, 3, 1)<= 3) { const Location &loc = AP::gps().location(); //get gps instance 0 lat = format_gps(fabsf(loc.lat/10000000.0f)); _gps.latdddmm = lat; _gps.latmmmm = (lat - _gps.latdddmm) * 10000; _gps.lat_ns = (loc.lat < 0) ? 'S' : 'N'; lon = format_gps(fabsf(loc.lng/10000000.0f)); _gps.londddmm = lon; _gps.lonmmmm = (lon - _gps.londddmm) * 10000; _gps.lon_ew = (loc.lng < 0) ? 'W' : 'E'; alt = loc.alt * 0.01f; _gps.alt_gps_meters = (int16_t)alt; _gps.alt_gps_cm = (alt - _gps.alt_gps_meters) * 100; speed = AP::gps().ground_speed(); _gps.speed_in_meter = speed; _gps.speed_in_centimeter = (speed - _gps.speed_in_meter) * 100; } else { _gps.latdddmm = 0; _gps.latmmmm = 0; _gps.lat_ns = 0; _gps.londddmm = 0; _gps.lonmmmm = 0; _gps.alt_gps_meters = 0; _gps.alt_gps_cm = 0; _gps.speed_in_meter = 0; _gps.speed_in_centimeter = 0; } } uint32_t AP_Frsky_Telem::sensor_status_flags() const { uint32_t present; uint32_t enabled; uint32_t health; gcs().get_sensor_status_flags(present, enabled, health); return ~health & enabled & present; } /* fetch Sport data for an external transport, such as FPort */ bool AP_Frsky_Telem::_get_telem_data(uint8_t &frame, uint16_t &appid, uint32_t &data) { passthrough_wfq_adaptive_scheduler(0); if (!external_data.pending) { return false; } frame = external_data.frame; appid = external_data.appid; data = external_data.data; external_data.pending = false; return true; } /* fetch Sport data for an external transport, such as FPort */ bool AP_Frsky_Telem::get_telem_data(uint8_t &frame, uint16_t &appid, uint32_t &data) { if (!singleton && !hal.util->get_soft_armed()) { // if telem data is requested when we are disarmed and don't // yet have a AP_Frsky_Telem object then try to allocate one new AP_Frsky_Telem(true); } if (!singleton) { return false; } return singleton->_get_telem_data(frame, appid, data); } namespace AP { AP_Frsky_Telem *frsky_telem() { return AP_Frsky_Telem::get_singleton(); } };