/* * Copyright (C) 2014 Pavel Kirienko * * With modifications for Ardupilot CAN driver * Copyright (C) 2017 Eugene Shamaev */ #include #include #include #if HAL_WITH_UAVCAN #include #include #include "CAN.h" #include #include #include #include #include "Scheduler.h" /* * FOR INVESTIGATION: * AP_HAL::micros64() was called for monotonic time counter * pavel-kirienko: This will work as long as we don't need to synchronize the autopilot's own clock with an external * time base, e.g. a GNSS time provided by an external GNSS receiver. Libuavcan's STM32 driver supports automatic time * synchronization only if it has a dedicated hardware timer to work with. */ extern const AP_HAL::HAL& hal; #include extern "C" { static int can1_irq(const int irq, void*); #if CAN_STM32_NUM_IFACES > 1 static int can2_irq(const int irq, void*); #endif } using namespace PX4; uint64_t clock::getUtcUSecFromCanInterrupt() { return AP_HAL::micros64(); } uavcan::MonotonicTime clock::getMonotonic() { return uavcan::MonotonicTime::fromUSec(AP_HAL::micros64()); } BusEvent::BusEvent(PX4CANManager& can_driver) : _signal(0) { } BusEvent::~BusEvent() { } bool BusEvent::wait(uavcan::MonotonicDuration duration) { struct hrt_call wait_call; irqstate_t irs = irqsave(); if (_signal) { _signal = 0; irqrestore(irs); return true; } sem_init(&_wait_semaphore, 0, 0); irqrestore(irs); hrt_call_after(&wait_call, duration.toUSec(), (hrt_callout) signalFromCallOut, this); sem_wait(&_wait_semaphore); hrt_cancel(&wait_call); irs = irqsave(); if (_signal) { _signal = 0; irqrestore(irs); return true; } irqrestore(irs); return false; } void BusEvent::signalFromCallOut(BusEvent *sem) { sem_post(&sem->_wait_semaphore); } void BusEvent::signalFromInterrupt() { _signal++; sem_post(&_wait_semaphore); } static void handleTxInterrupt(uint8_t iface_index) { if (iface_index < CAN_STM32_NUM_IFACES) { uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); if (utc_usec > 0) { utc_usec--; } PX4CAN* iface = ((PX4CANManager*) hal.can_mgr)->getIface(iface_index); if (iface != nullptr) { iface->handleTxInterrupt(utc_usec); } } } static void handleRxInterrupt(uint8_t iface_index, uint8_t fifo_index) { if (iface_index < CAN_STM32_NUM_IFACES) { uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); if (utc_usec > 0) { utc_usec--; } PX4CAN* iface = ((PX4CANManager*) hal.can_mgr)->getIface(iface_index); if (iface != nullptr) { iface->handleRxInterrupt(fifo_index, utc_usec); } } } const uint32_t PX4CAN::TSR_ABRQx[PX4CAN::NumTxMailboxes] = { bxcan::TSR_ABRQ0, bxcan::TSR_ABRQ1, bxcan::TSR_ABRQ2 }; PX4CAN* PX4CANManager::ifaces[CAN_STM32_NUM_IFACES] = {}; int PX4CAN::computeTimings(const uint32_t target_bitrate, Timings& out_timings) { if (target_bitrate < 1) { return -ErrInvalidBitRate; } /* * Hardware configuration */ const uint32_t pclk = STM32_PCLK1_FREQUENCY; static const uint8_t MaxBS1 = 16; static const uint8_t MaxBS2 = 8; /* * Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG * CAN in Automation, 2003 * * According to the source, optimal quanta per bit are: * Bitrate Optimal Maximum * 1000 kbps 8 10 * 500 kbps 16 17 * 250 kbps 16 17 * 125 kbps 16 17 */ const uint8_t max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17; if (max_quanta_per_bit > (MaxBS1 + MaxBS2)) { if (AP_BoardConfig::get_can_debug() >= 1) { printf("PX4CAN::computeTimings max_quanta_per_bit problem\n\r"); } } static const uint16_t MaxSamplePointLocation = 900; /* * Computing (prescaler * BS): * BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual * BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified * let: * BS = 1 + BS1 + BS2 -- Number of time quanta per bit * PRESCALER_BS = PRESCALER * BS * ==> * PRESCALER_BS = PCLK / BITRATE */ const uint32_t prescaler_bs = pclk / target_bitrate; /* * Searching for such prescaler value so that the number of quanta per bit is highest. */ uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1); while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) { if (bs1_bs2_sum <= 2) { return -ErrInvalidBitRate; // No solution } bs1_bs2_sum--; } const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum); if ((prescaler < 1U) || (prescaler > 1024U)) { return -ErrInvalidBitRate; // No solution } /* * Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum. * We need to find the values so that the sample point is as close as possible to the optimal value. * * Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *) * {{bs2 -> (1 + bs1)/7}} * * Hence: * bs2 = (1 + bs1) / 7 * bs1 = (7 * bs1_bs2_sum - 1) / 8 * * Sample point location can be computed as follows: * Sample point location = (1 + bs1) / (1 + bs1 + bs2) * * Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one: * - With rounding to nearest * - With rounding to zero */ struct BsPair { uint8_t bs1; uint8_t bs2; uint16_t sample_point_permill; BsPair() : bs1(0), bs2(0), sample_point_permill(0) { } BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) : bs1(arg_bs1), bs2(uint8_t(bs1_bs2_sum - bs1)), sample_point_permill( uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2))) { if (bs1_bs2_sum <= arg_bs1) { if (AP_BoardConfig::get_can_debug() >= 1) { AP_HAL::panic("PX4CAN::computeTimings bs1_bs2_sum <= arg_bs1"); } } } bool isValid() const { return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); } }; // First attempt with rounding to nearest BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8)); if (solution.sample_point_permill > MaxSamplePointLocation || !solution.isValid()) { // Second attempt with rounding to zero solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8)); if (!solution.isValid()) { printf("PX4CAN::computeTimings second solution invalid\n\r"); return -ErrLogic; } } /* * Final validation */ if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) { if (AP_BoardConfig::get_can_debug() >= 1) { printf("PX4CAN::computeTimings target_bitrate error\n\r"); } return -ErrLogic; } if (AP_BoardConfig::get_can_debug() >= 2) { printf("PX4CAN::computeTimings Timings: quanta/bit: %d, sample point location: %.1f%%\n\r", int(1 + solution.bs1 + solution.bs2), double(solution.sample_point_permill / 10.0)); } out_timings.prescaler = uint16_t(prescaler - 1U); out_timings.sjw = 0; // Which means one out_timings.bs1 = uint8_t(solution.bs1 - 1); out_timings.bs2 = uint8_t(solution.bs2 - 1); return 0; } int16_t PX4CAN::send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline, uavcan::CanIOFlags flags) { if (frame.isErrorFrame() || frame.dlc > 8) { return -ErrUnsupportedFrame; } /* * Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because * it is possible that the highest-priority frame between select() and send() could have been * replaced with a lower priority one due to TX timeout. But we don't do this check because: * * - It is a highly unlikely scenario. * * - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new * frame can only have higher priority, which doesn't break the logic. * * - If high-priority frames are timing out in the TX queue, there's probably a lot of other * issues to take care of before this one becomes relevant. * * - It takes CPU time. Not just CPU time, but critical section time, which is expensive. */ CriticalSectionLocker lock; /* * Seeking for an empty slot */ uint8_t txmailbox = 0xFF; if ((can_->TSR & bxcan::TSR_TME0) == bxcan::TSR_TME0) { txmailbox = 0; } else if ((can_->TSR & bxcan::TSR_TME1) == bxcan::TSR_TME1) { txmailbox = 1; } else if ((can_->TSR & bxcan::TSR_TME2) == bxcan::TSR_TME2) { txmailbox = 2; } else { return 0; // No transmission for you. } peak_tx_mailbox_index_ = uavcan::max(peak_tx_mailbox_index_, txmailbox); // Statistics /* * Setting up the mailbox */ bxcan::TxMailboxType& mb = can_->TxMailbox[txmailbox]; if (frame.isExtended()) { mb.TIR = ((frame.id & uavcan::CanFrame::MaskExtID) << 3) | bxcan::TIR_IDE; } else { mb.TIR = ((frame.id & uavcan::CanFrame::MaskStdID) << 21); } if (frame.isRemoteTransmissionRequest()) { mb.TIR |= bxcan::TIR_RTR; } mb.TDTR = frame.dlc; mb.TDHR = (uint32_t(frame.data[7]) << 24) | (uint32_t(frame.data[6]) << 16) | (uint32_t(frame.data[5]) << 8) | (uint32_t(frame.data[4]) << 0); mb.TDLR = (uint32_t(frame.data[3]) << 24) | (uint32_t(frame.data[2]) << 16) | (uint32_t(frame.data[1]) << 8) | (uint32_t(frame.data[0]) << 0); mb.TIR |= bxcan::TIR_TXRQ; // Go. /* * Registering the pending transmission so we can track its deadline and loopback it as needed */ TxItem& txi = pending_tx_[txmailbox]; txi.deadline = tx_deadline; txi.frame = frame; txi.loopback = (flags & uavcan::CanIOFlagLoopback) != 0; txi.abort_on_error = (flags & uavcan::CanIOFlagAbortOnError) != 0; txi.pending = true; return 1; } int16_t PX4CAN::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic, uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags) { out_ts_monotonic = clock::getMonotonic(); // High precision is not required for monotonic timestamps uint64_t utc_usec = 0; { CriticalSectionLocker lock; if (rx_queue_.available() == 0) { return 0; } CanRxItem frm; rx_queue_.pop(frm); out_frame = frm.frame; utc_usec = frm.utc_usec; out_flags = frm.flags; } out_ts_utc = uavcan::UtcTime::fromUSec(utc_usec); return 1; } int16_t PX4CAN::configureFilters(const uavcan::CanFilterConfig* filter_configs, uint16_t num_configs) { // TODO: Hardware filter support CriticalSectionLocker lock; (void) filter_configs; (void) num_configs; return -ErrNotImplemented; } bool PX4CAN::waitMsrINakBitStateChange(bool target_state) { const unsigned Timeout = 1000; for (unsigned wait_ack = 0; wait_ack < Timeout; wait_ack++) { const bool state = (can_->MSR & bxcan::MSR_INAK) != 0; if (state == target_state) { return true; } hal.scheduler->delay_microseconds(1000); } return false; } int PX4CAN::init(const uint32_t bitrate, const OperatingMode mode) { /* We need to silence the controller in the first order, otherwise it may interfere with the following operations. */ { CriticalSectionLocker lock; can_->MCR &= ~bxcan::MCR_SLEEP; // Exit sleep mode can_->MCR |= bxcan::MCR_INRQ; // Request init can_->IER = 0; // Disable CAN interrupts while initialization is in progress } if (!waitMsrINakBitStateChange(true)) { if (AP_BoardConfig::get_can_debug() >= 1) { printf("PX4CAN::init MSR INAK not set\n\r"); } can_->MCR = bxcan::MCR_RESET; return -ErrMsrInakNotSet; } /* * Object state - CAN interrupts are disabled, so it's safe to modify it now */ rx_queue_.clear(); error_cnt_ = 0; served_aborts_cnt_ = 0; uavcan::fill_n(pending_tx_, NumTxMailboxes, TxItem()); peak_tx_mailbox_index_ = 0; had_activity_ = false; /* * CAN timings for this bitrate */ Timings timings; const int timings_res = computeTimings(bitrate, timings); if (timings_res < 0) { can_->MCR = bxcan::MCR_RESET; return timings_res; } if (AP_BoardConfig::get_can_debug() >= 2) { printf("PX4CAN::init Timings: presc=%u sjw=%u bs1=%u bs2=%u\n\r", unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2)); } /* * Hardware initialization (the hardware has already confirmed initialization mode, see above) */ can_->MCR = bxcan::MCR_ABOM | bxcan::MCR_AWUM | bxcan::MCR_INRQ; // RM page 648 can_->BTR = ((timings.sjw & 3U) << 24) | ((timings.bs1 & 15U) << 16) | ((timings.bs2 & 7U) << 20) | (timings.prescaler & 1023U) | ((mode == SilentMode) ? bxcan::BTR_SILM : 0); can_->IER = bxcan::IER_TMEIE | // TX mailbox empty bxcan::IER_FMPIE0 | // RX FIFO 0 is not empty bxcan::IER_FMPIE1; // RX FIFO 1 is not empty can_->MCR &= ~bxcan::MCR_INRQ; // Leave init mode if (!waitMsrINakBitStateChange(false)) { if (AP_BoardConfig::get_can_debug() >= 1) { printf("PX4CAN::init MSR INAK not cleared\n\r"); } can_->MCR = bxcan::MCR_RESET; return -ErrMsrInakNotCleared; } /* * Default filter configuration */ if (self_index_ == 0) { can_->FMR |= bxcan::FMR_FINIT; can_->FMR &= 0xFFFFC0F1; can_->FMR |= static_cast(NumFilters) << 8; // Slave (CAN2) gets half of the filters can_->FFA1R = 0; // All assigned to FIFO0 by default can_->FM1R = 0; // Indentifier Mask mode can_->FS1R = 0x7ffffff; // Single 32-bit for all can_->FilterRegister[0].FR1 = 0; // CAN1 accepts everything can_->FilterRegister[0].FR2 = 0; can_->FilterRegister[NumFilters].FR1 = 0; // CAN2 accepts everything can_->FilterRegister[NumFilters].FR2 = 0; can_->FA1R = 1 | (1 << NumFilters); // One filter per each iface can_->FMR &= ~bxcan::FMR_FINIT; } return 0; } void PX4CAN::handleTxMailboxInterrupt(uint8_t mailbox_index, bool txok, const uint64_t utc_usec) { if (mailbox_index < NumTxMailboxes) { had_activity_ = had_activity_ || txok; TxItem& txi = pending_tx_[mailbox_index]; if (txi.loopback && txok && txi.pending) { CanRxItem frm; frm.frame = txi.frame; frm.flags = uavcan::CanIOFlagLoopback; frm.utc_usec = utc_usec; rx_queue_.push(frm); } txi.pending = false; } } void PX4CAN::handleTxInterrupt(const uint64_t utc_usec) { // TXOK == false means that there was a hardware failure if (can_->TSR & bxcan::TSR_RQCP0) { const bool txok = can_->TSR & bxcan::TSR_TXOK0; can_->TSR = bxcan::TSR_RQCP0; handleTxMailboxInterrupt(0, txok, utc_usec); } if (can_->TSR & bxcan::TSR_RQCP1) { const bool txok = can_->TSR & bxcan::TSR_TXOK1; can_->TSR = bxcan::TSR_RQCP1; handleTxMailboxInterrupt(1, txok, utc_usec); } if (can_->TSR & bxcan::TSR_RQCP2) { const bool txok = can_->TSR & bxcan::TSR_TXOK2; can_->TSR = bxcan::TSR_RQCP2; handleTxMailboxInterrupt(2, txok, utc_usec); } update_event_.signalFromInterrupt(); pollErrorFlagsFromISR(); } void PX4CAN::handleRxInterrupt(uint8_t fifo_index, uint64_t utc_usec) { if (fifo_index < 2) { volatile uint32_t* const rfr_reg = (fifo_index == 0) ? &can_->RF0R : &can_->RF1R; if ((*rfr_reg & bxcan::RFR_FMP_MASK) == 0) { return; } /* * Register overflow as a hardware error */ if ((*rfr_reg & bxcan::RFR_FOVR) != 0) { error_cnt_++; } /* * Read the frame contents */ uavcan::CanFrame frame; const bxcan::RxMailboxType& rf = can_->RxMailbox[fifo_index]; if ((rf.RIR & bxcan::RIR_IDE) == 0) { frame.id = uavcan::CanFrame::MaskStdID & (rf.RIR >> 21); } else { frame.id = uavcan::CanFrame::MaskExtID & (rf.RIR >> 3); frame.id |= uavcan::CanFrame::FlagEFF; } if ((rf.RIR & bxcan::RIR_RTR) != 0) { frame.id |= uavcan::CanFrame::FlagRTR; } frame.dlc = rf.RDTR & 15; frame.data[0] = uint8_t(0xFF & (rf.RDLR >> 0)); frame.data[1] = uint8_t(0xFF & (rf.RDLR >> 8)); frame.data[2] = uint8_t(0xFF & (rf.RDLR >> 16)); frame.data[3] = uint8_t(0xFF & (rf.RDLR >> 24)); frame.data[4] = uint8_t(0xFF & (rf.RDHR >> 0)); frame.data[5] = uint8_t(0xFF & (rf.RDHR >> 8)); frame.data[6] = uint8_t(0xFF & (rf.RDHR >> 16)); frame.data[7] = uint8_t(0xFF & (rf.RDHR >> 24)); *rfr_reg = bxcan::RFR_RFOM | bxcan::RFR_FOVR | bxcan::RFR_FULL; // Release FIFO entry we just read /* * Store with timeout into the FIFO buffer and signal update event */ CanRxItem frm; frm.frame = frame; frm.flags = 0; frm.utc_usec = utc_usec; rx_queue_.push(frm); had_activity_ = true; update_event_.signalFromInterrupt(); pollErrorFlagsFromISR(); } } void PX4CAN::pollErrorFlagsFromISR() { const uint8_t lec = uint8_t((can_->ESR & bxcan::ESR_LEC_MASK) >> bxcan::ESR_LEC_SHIFT); if (lec != 0) { can_->ESR = 0; error_cnt_++; // Serving abort requests for (int i = 0; i < NumTxMailboxes; i++) { // Dear compiler, may I suggest you to unroll this loop please. TxItem& txi = pending_tx_[i]; if (txi.pending && txi.abort_on_error) { can_->TSR = TSR_ABRQx[i]; txi.pending = false; served_aborts_cnt_++; } } } } void PX4CAN::discardTimedOutTxMailboxes(uavcan::MonotonicTime current_time) { CriticalSectionLocker lock; for (int i = 0; i < NumTxMailboxes; i++) { TxItem& txi = pending_tx_[i]; if (txi.pending && txi.deadline < current_time) { can_->TSR = TSR_ABRQx[i]; // Goodnight sweet transmission txi.pending = false; error_cnt_++; } } } bool PX4CAN::canAcceptNewTxFrame(const uavcan::CanFrame& frame) const { /* * We can accept more frames only if the following conditions are satisfied: * - There is at least one TX mailbox free (obvious enough); * - The priority of the new frame is higher than priority of all TX mailboxes. */ { static const uint32_t TME = bxcan::TSR_TME0 | bxcan::TSR_TME1 | bxcan::TSR_TME2; const uint32_t tme = can_->TSR & TME; if (tme == TME) { // All TX mailboxes are free (as in freedom). return true; } if (tme == 0) { // All TX mailboxes are busy transmitting. return false; } } /* * The second condition requires a critical section. */ CriticalSectionLocker lock; for (int mbx = 0; mbx < NumTxMailboxes; mbx++) { if (pending_tx_[mbx].pending && !frame.priorityHigherThan(pending_tx_[mbx].frame)) { return false; // There's a mailbox whose priority is higher or equal the priority of the new frame. } } return true; // This new frame will be added to a free TX mailbox in the next @ref send(). } bool PX4CAN::isRxBufferEmpty() const { CriticalSectionLocker lock; return rx_queue_.available() == 0; } uint64_t PX4CAN::getErrorCount() const { CriticalSectionLocker lock; return error_cnt_; //TODO: + rx_queue_.getOverflowCount(); } unsigned PX4CAN::getRxQueueLength() const { CriticalSectionLocker lock; return rx_queue_.available(); } bool PX4CAN::hadActivity() { CriticalSectionLocker lock; const bool ret = had_activity_; had_activity_ = false; return ret; } bool PX4CAN::begin(uint32_t bitrate) { if (init(bitrate, OperatingMode::NormalMode) == 0) { bitrate_ = bitrate; initialized_ = true; } else { initialized_ = false; } return initialized_; } void PX4CAN::reset() { if (initialized_ && bitrate_ != 0) { init(bitrate_, OperatingMode::NormalMode); } } bool PX4CAN::is_initialized() { return initialized_; } int32_t PX4CAN::available() { if (initialized_) { return getRxQueueLength(); } else { return -1; } } int32_t PX4CAN::tx_pending() { int32_t ret = -1; if (initialized_) { ret = 0; CriticalSectionLocker lock; for (int mbx = 0; mbx < NumTxMailboxes; mbx++) { if (pending_tx_[mbx].pending) { ret++; } } } return ret; } /* * CanDriver */ uavcan::CanSelectMasks PX4CANManager::makeSelectMasks(const uavcan::CanFrame* (&pending_tx)[uavcan::MaxCanIfaces]) const { uavcan::CanSelectMasks msk; if (can_number_ >= 1) { // Iface 0 msk.read = if0_.isRxBufferEmpty() ? 0 : 1; if (pending_tx[0] != nullptr) { msk.write = if0_.canAcceptNewTxFrame(*pending_tx[0]) ? 1 : 0; } } #if CAN_STM32_NUM_IFACES > 1 if (can_number_ >= 2) { if (!if1_.isRxBufferEmpty()) { msk.read |= 1 << 1; } // Iface 1 if (pending_tx[1] != nullptr) { if (if1_.canAcceptNewTxFrame(*pending_tx[1])) { msk.write |= 1 << 1; } } } #endif return msk; } bool PX4CANManager::hasReadableInterfaces() const { #if CAN_STM32_NUM_IFACES > 1 if (can_number_ >= 2) { return !if0_.isRxBufferEmpty() || !if1_.isRxBufferEmpty(); } #endif return !if0_.isRxBufferEmpty(); } int16_t PX4CANManager::select(uavcan::CanSelectMasks& inout_masks, const uavcan::CanFrame* (&pending_tx)[uavcan::MaxCanIfaces], const uavcan::MonotonicTime blocking_deadline) { const uavcan::CanSelectMasks in_masks = inout_masks; const uavcan::MonotonicTime time = clock::getMonotonic(); if (can_number_ >= 1) { if0_.discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots { CriticalSectionLocker cs_locker; if0_.pollErrorFlagsFromISR(); } } #if CAN_STM32_NUM_IFACES > 1 if (can_number_ >= 2) { if1_.discardTimedOutTxMailboxes(time); { CriticalSectionLocker cs_locker; if1_.pollErrorFlagsFromISR(); } } #endif inout_masks = makeSelectMasks(pending_tx); // Check if we already have some of the requested events if ((inout_masks.read & in_masks.read) != 0 || (inout_masks.write & in_masks.write) != 0) { return 1; } (void) update_event_.wait(blocking_deadline - time); // Block until timeout expires or any iface updates inout_masks = makeSelectMasks(pending_tx); // Return what we got even if none of the requested events are set return 1; // Return value doesn't matter as long as it is non-negative } void PX4CANManager::initOnce(uint8_t can_number) { /* * CAN1, CAN2 */ { CriticalSectionLocker lock; if (can_number >= 1) { modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_CAN1EN); } #if CAN_STM32_NUM_IFACES > 1 if (can_number >= 2) { modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_CAN2EN); } #endif } if (can_number >= 1) { #if defined(GPIO_CAN1_RX) && defined(GPIO_CAN1_TX) stm32_configgpio(GPIO_CAN1_RX); stm32_configgpio(GPIO_CAN1_TX); #else # error "Need to define GPIO_CAN1_RX/TX" #endif } #if CAN_STM32_NUM_IFACES > 1 if (can_number >= 2) { #if defined(GPIO_CAN2_RX) && defined(GPIO_CAN2_TX) stm32_configgpio(GPIO_CAN2_RX | GPIO_PULLUP); stm32_configgpio(GPIO_CAN2_TX); #else # error "Need to define GPIO_CAN2_RX/TX" #endif // defined(GPIO_CAN2_RX) && defined(GPIO_CAN2_TX) } #endif // CAN_STM32_NUM_IFACES > 1 /* * IRQ */ if (can_number >= 1) { #if defined(STM32_IRQ_CAN1TX) && defined(STM32_IRQ_CAN1RX0) && defined(STM32_IRQ_CAN1RX1) CAN_IRQ_ATTACH(STM32_IRQ_CAN1TX, can1_irq); CAN_IRQ_ATTACH(STM32_IRQ_CAN1RX0, can1_irq); CAN_IRQ_ATTACH(STM32_IRQ_CAN1RX1, can1_irq); #else # error "Need to define STM32_IRQ_CAN1TX/RX0/RX1" #endif } #if CAN_STM32_NUM_IFACES > 1 if (can_number >= 2) { #if defined(STM32_IRQ_CAN2TX) && defined(STM32_IRQ_CAN2RX0) && defined(STM32_IRQ_CAN2RX1) CAN_IRQ_ATTACH(STM32_IRQ_CAN2TX, can2_irq); CAN_IRQ_ATTACH(STM32_IRQ_CAN2RX0, can2_irq); CAN_IRQ_ATTACH(STM32_IRQ_CAN2RX1, can2_irq); #else # error "Need to define STM32_IRQ_CAN2TX/RX0/RX1" #endif // defined(STM32_IRQ_CAN2TX) && defined(STM32_IRQ_CAN2RX0) && defined(STM32_IRQ_CAN2RX1) } #endif // CAN_STM32_NUM_IFACES > 1 } int PX4CANManager::init(const uint32_t bitrate, const PX4CAN::OperatingMode mode, uint8_t can_number) { int res = -ErrNotImplemented; if (can_number <= CAN_STM32_NUM_IFACES) { res = 0; can_number_ = can_number; if (AP_BoardConfig::get_can_debug() >= 2) { printf("PX4CANManager::init Bitrate %lu mode %d bus %d\n\r", static_cast(bitrate), static_cast(mode), static_cast(can_number)); } static bool initialized_once = false; if (!initialized_once) { initialized_once = true; if (AP_BoardConfig::get_can_debug() >= 2) { printf("PX4CANManager::init First initialization bus %d\n\r", static_cast(can_number)); } initOnce(can_number); } /* * CAN1 */ if (can_number >= 1) { if (AP_BoardConfig::get_can_debug() >= 2) { printf("PX4CANManager::init Initing iface 0...\n\r"); } ifaces[0] = &if0_; // This link must be initialized first, res = if0_.init(bitrate, mode); // otherwise an IRQ may fire while the interface is not linked yet; if (res < 0) { // a typical race condition. printf("PX4CANManager::init Iface 0 init failed %i\n\r", res); ifaces[0] = nullptr; return res; } } #if CAN_STM32_NUM_IFACES > 1 /* * CAN2 */ if (can_number >= 2) { if (AP_BoardConfig::get_can_debug() >= 2) { printf("PX4CANManager::init Initing iface 1...\n\r"); } ifaces[1] = &if1_; // Same thing here. res = if1_.init(bitrate, mode); if (res < 0) { printf("PX4CANManager::init Iface 1 init failed %i\n\r", res); ifaces[1] = nullptr; return res; } } #endif if (AP_BoardConfig::get_can_debug() >= 2) { printf("PX4CANManager::init CAN drv init OK, res = %d\n\r", res); } } return res; } PX4CAN* PX4CANManager::getIface(uint8_t iface_index) { if (iface_index < CAN_STM32_NUM_IFACES) { return ifaces[iface_index]; } return nullptr; } bool PX4CANManager::hadActivity() { bool ret = if0_.hadActivity(); #if CAN_STM32_NUM_IFACES > 1 ret |= if1_.hadActivity(); #endif return ret; } bool PX4CANManager::begin(uint32_t bitrate, uint8_t can_number) { if (init(bitrate, PX4CAN::OperatingMode::NormalMode, can_number) >= 0) { initialized_ = true; if (p_uavcan != nullptr) { uint16_t UAVCAN_init_tries; // TODO: Limit number of times we try to init UAVCAN and also provide // the reasonable actions when it fails. for (UAVCAN_init_tries = 0; UAVCAN_init_tries < 100; UAVCAN_init_tries++) { if (p_uavcan->try_init() == true) { return true; } hal.scheduler->delay(1); } } } return false; } bool PX4CANManager::is_initialized() { return initialized_; } AP_UAVCAN *PX4CANManager::get_UAVCAN(void) { return p_uavcan; } void PX4CANManager::set_UAVCAN(AP_UAVCAN *uavcan) { p_uavcan = uavcan; } /* * Interrupt handlers */ extern "C" { static int can1_irq(const int irq, void*) { if (irq == STM32_IRQ_CAN1TX) { handleTxInterrupt(0); } else if (irq == STM32_IRQ_CAN1RX0) { handleRxInterrupt(0, 0); } else if (irq == STM32_IRQ_CAN1RX1) { handleRxInterrupt(0, 1); } else { printf("can1_irq unhandled"); } return 0; } #if CAN_STM32_NUM_IFACES > 1 static int can2_irq(const int irq, void*) { if (irq == STM32_IRQ_CAN2TX) { handleTxInterrupt(1); } else if (irq == STM32_IRQ_CAN2RX0) { handleRxInterrupt(1, 0); } else if (irq == STM32_IRQ_CAN2RX1) { handleRxInterrupt(1, 1); } else { printf("can2_irq unhandled"); } return 0; } #endif } // extern "C" #endif