/*
 * This file is free software: you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This file is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Code by Andrew Tridgell and Siddharth Bharat Purohit
 */
/*
  with thanks to PX4 dsm.c for DSM decoding approach
 */
#include "AP_RCProtocol_DSM.h"

extern const AP_HAL::HAL& hal;

// #define DEBUG
#ifdef DEBUG
# define debug(fmt, args...)	hal.console->printf(fmt "\n", ##args)
#else
# define debug(fmt, args...)	do {} while(0)
#endif


#define DSM_FRAME_SIZE		16		/**<DSM frame size in bytes*/
#define DSM_FRAME_CHANNELS	7		/**<Max supported DSM channels*/

void AP_RCProtocol_DSM::process_pulse(uint32_t width_s0, uint32_t width_s1)
{
    // convert to bit widths, allowing for up to about 4usec error, assuming 115200 bps
    uint16_t bits_s0 = ((width_s0+4)*(uint32_t)115200) / 1000000;
    uint16_t bits_s1 = ((width_s1+4)*(uint32_t)115200) / 1000000;
    uint8_t bit_ofs, byte_ofs;
    uint16_t nbits;

    if (bits_s0 == 0 || bits_s1 == 0) {
        // invalid data
        goto reset;
    }

    byte_ofs = dsm_state.bit_ofs/10;
    bit_ofs = dsm_state.bit_ofs%10;

    if(byte_ofs > 15) {
        // invalid data
        goto reset;
    }

    // pull in the high bits
    nbits = bits_s0;
    if (nbits+bit_ofs > 10) {
        nbits = 10 - bit_ofs;
    }
    dsm_state.bytes[byte_ofs] |= ((1U<<nbits)-1) << bit_ofs;
    dsm_state.bit_ofs += nbits;
    bit_ofs += nbits;

    if (bits_s0 - nbits > 10) {
        if (dsm_state.bit_ofs == 16*10) {
            // we have a full frame
            uint8_t bytes[16];
            uint8_t i;
            for (i=0; i<16; i++) {
                // get raw data
                uint16_t v = dsm_state.bytes[i];

                // check start bit
                if ((v & 1) != 0) {
                    goto reset;
                }
                // check stop bits
                if ((v & 0x200) != 0x200) {
                    goto reset;
                }
                bytes[i] = ((v>>1) & 0xFF);
            }
            uint16_t values[8];
            uint16_t num_values=0;
            if (dsm_decode(AP_HAL::micros64(), bytes, values, &num_values, 8) &&
                num_values >= MIN_RCIN_CHANNELS) {
                add_input(num_values, values, false);
            }
        }
        memset(&dsm_state, 0, sizeof(dsm_state));
    }

    byte_ofs = dsm_state.bit_ofs/10;
    bit_ofs = dsm_state.bit_ofs%10;

    if (bits_s1+bit_ofs > 10) {
        // invalid data
        goto reset;
    }

    // pull in the low bits
    dsm_state.bit_ofs += bits_s1;
    return;
reset:
    memset(&dsm_state, 0, sizeof(dsm_state));
}

/**
 * Attempt to decode a single channel raw channel datum
 *
 * The DSM* protocol doesn't provide any explicit framing,
 * so we detect dsm frame boundaries by the inter-dsm frame delay.
 *
 * The minimum dsm frame spacing is 11ms; with 16 bytes at 115200bps
 * dsm frame transmission time is ~1.4ms.
 *
 * We expect to only be called when bytes arrive for processing,
 * and if an interval of more than 5ms passes between calls,
 * the first byte we read will be the first byte of a dsm frame.
 *
 * In the case where byte(s) are dropped from a dsm frame, this also
 * provides a degree of protection. Of course, it would be better
 * if we didn't drop bytes...
 *
 * Upon receiving a full dsm frame we attempt to decode it
 *
 * @param[in] raw 16 bit raw channel value from dsm frame
 * @param[in] shift position of channel number in raw data
 * @param[out] channel pointer to returned channel number
 * @param[out] value pointer to returned channel value
 * @return true=raw value successfully decoded
 */
bool AP_RCProtocol_DSM::dsm_decode_channel(uint16_t raw, unsigned shift, unsigned *channel, unsigned *value)
{

	if (raw == 0xffff)
		return false;

	*channel = (raw >> shift) & 0xf;

	uint16_t data_mask = (1 << shift) - 1;
	*value = raw & data_mask;

	//debug("DSM: %d 0x%04x -> %d %d", shift, raw, *channel, *value);

	return true;
}

/**
 * Attempt to guess if receiving 10 or 11 bit channel values
 *
 * @param[in] reset true=reset the 10/11 bit state to unknown
 */
void AP_RCProtocol_DSM::dsm_guess_format(bool reset, const uint8_t dsm_frame[16])
{
	static uint32_t	cs10;
	static uint32_t	cs11;
	static unsigned samples;

	/* reset the 10/11 bit sniffed channel masks */
	if (reset) {
		cs10 = 0;
		cs11 = 0;
		samples = 0;
		dsm_channel_shift = 0;
		return;
	}

	/* scan the channels in the current dsm_frame in both 10- and 11-bit mode */
	for (unsigned i = 0; i < DSM_FRAME_CHANNELS; i++) {

		const uint8_t *dp = &dsm_frame[2 + (2 * i)];
		uint16_t raw = (dp[0] << 8) | dp[1];
		unsigned channel, value;

		/* if the channel decodes, remember the assigned number */
		if (dsm_decode_channel(raw, 10, &channel, &value) && (channel < 31))
			cs10 |= (1 << channel);

		if (dsm_decode_channel(raw, 11, &channel, &value) && (channel < 31))
			cs11 |= (1 << channel);

		/* XXX if we cared, we could look for the phase bit here to decide 1 vs. 2-dsm_frame format */
	}

	/* wait until we have seen plenty of frames - 5 should normally be enough */
	if (samples++ < 5)
		return;

	/*
	 * Iterate the set of sensible sniffed channel sets and see whether
	 * decoding in 10 or 11-bit mode has yielded anything we recognize.
	 *
	 * XXX Note that due to what seem to be bugs in the DSM2 high-resolution
	 *     stream, we may want to sniff for longer in some cases when we think we
	 *     are talking to a DSM2 receiver in high-resolution mode (so that we can
	 *     reject it, ideally).
	 *     See e.g. http://git.openpilot.org/cru/OPReview-116 for a discussion
	 *     of this issue.
	 */
	static uint32_t masks[] = {
		0x3f,	/* 6 channels (DX6) */
		0x7f,	/* 7 channels (DX7) */
		0xff,	/* 8 channels (DX8) */
		0x1ff,	/* 9 channels (DX9, etc.) */
		0x3ff,	/* 10 channels (DX10) */
		0x1fff,	/* 13 channels (DX10t) */
		0x3fff	/* 18 channels (DX10) */
	};
	unsigned votes10 = 0;
	unsigned votes11 = 0;

	for (unsigned i = 0; i < sizeof(masks)/sizeof(masks[0]); i++) {

		if (cs10 == masks[i])
			votes10++;

		if (cs11 == masks[i])
			votes11++;
	}

	if ((votes11 == 1) && (votes10 == 0)) {
		dsm_channel_shift = 11;
		debug("DSM: 11-bit format");
		return;
	}

	if ((votes10 == 1) && (votes11 == 0)) {
		dsm_channel_shift = 10;
		debug("DSM: 10-bit format");
		return;
	}

	/* call ourselves to reset our state ... we have to try again */
	debug("DSM: format detect fail, 10: 0x%08x %d 11: 0x%08x %d", cs10, votes10, cs11, votes11);
	dsm_guess_format(true, dsm_frame);
}

/**
 * Decode the entire dsm frame (all contained channels)
 *
 */
bool AP_RCProtocol_DSM::dsm_decode(uint64_t frame_time, const uint8_t dsm_frame[16], 
                                   uint16_t *values, uint16_t *num_values, uint16_t max_values)
{
#if 0
	debug("DSM dsm_frame %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x",
		dsm_frame[0], dsm_frame[1], dsm_frame[2], dsm_frame[3], dsm_frame[4], dsm_frame[5], dsm_frame[6], dsm_frame[7],
		dsm_frame[8], dsm_frame[9], dsm_frame[10], dsm_frame[11], dsm_frame[12], dsm_frame[13], dsm_frame[14], dsm_frame[15]);
#endif
	/*
	 * If we have lost signal for at least a second, reset the
	 * format guessing heuristic.
	 */
	if (((frame_time - dsm_last_frame_time) > 1000000) && (dsm_channel_shift != 0)) {
            dsm_guess_format(true, dsm_frame);
    }

	/* we have received something we think is a dsm_frame */
	dsm_last_frame_time = frame_time;

	/* if we don't know the dsm_frame format, update the guessing state machine */
	if (dsm_channel_shift == 0) {
            dsm_guess_format(false, dsm_frame);
            return false;
	}

	/*
	 * The encoding of the first two bytes is uncertain, so we're
	 * going to ignore them for now.
	 *
	 * Each channel is a 16-bit unsigned value containing either a 10-
	 * or 11-bit channel value and a 4-bit channel number, shifted
	 * either 10 or 11 bits. The MSB may also be set to indicate the
	 * second dsm_frame in variants of the protocol where more than
	 * seven channels are being transmitted.
	 */

	for (unsigned i = 0; i < DSM_FRAME_CHANNELS; i++) {

		const uint8_t *dp = &dsm_frame[2 + (2 * i)];
		uint16_t raw = (dp[0] << 8) | dp[1];
		unsigned channel, value;

		if (!dsm_decode_channel(raw, dsm_channel_shift, &channel, &value))
			continue;

		/* ignore channels out of range */
		if (channel >= max_values)
			continue;

		/* update the decoded channel count */
		if (channel >= *num_values)
			*num_values = channel + 1;

		/* convert 0-1024 / 0-2048 values to 1000-2000 ppm encoding. */
		if (dsm_channel_shift == 10)
			value *= 2;

		/*
		 * Spektrum scaling is special. There are these basic considerations
		 *
		 *   * Midpoint is 1520 us
		 *   * 100% travel channels are +- 400 us
		 *
		 * We obey the original Spektrum scaling (so a default setup will scale from
		 * 1100 - 1900 us), but we do not obey the weird 1520 us center point
		 * and instead (correctly) center the center around 1500 us. This is in order
		 * to get something useful without requiring the user to calibrate on a digital
		 * link for no reason.
		 */

		/* scaled integer for decent accuracy while staying efficient */
		value = ((((int)value - 1024) * 1000) / 1700) + 1500;

		/*
		 * Store the decoded channel into the R/C input buffer, taking into
		 * account the different ideas about channel assignement that we have.
		 *
		 * Specifically, the first four channels in rc_channel_data are roll, pitch, thrust, yaw,
		 * but the first four channels from the DSM receiver are thrust, roll, pitch, yaw.
		 */
		switch (channel) {
		case 0:
			channel = 2;
			break;

		case 1:
			channel = 0;
			break;

		case 2:
			channel = 1;

		default:
			break;
		}

		values[channel] = value;
	}

	/*
	 * Spektrum likes to send junk in higher channel numbers to fill
	 * their packets. We don't know about a 13 channel model in their TX
	 * lines, so if we get a channel count of 13, we'll return 12 (the last
	 * data index that is stable).
	 */
	if (*num_values == 13)
		*num_values = 12;

#if 0
	if (dsm_channel_shift == 11) {
		/* Set the 11-bit data indicator */
		*num_values |= 0x8000;
	}
#endif

	/*
	 * XXX Note that we may be in failsafe here; we need to work out how to detect that.
	 */
	return true;
}


/*
  start bind on DSM satellites
 */
void AP_RCProtocol_DSM::start_bind(void)
{
    bind_state = BIND_STATE1;
}


/*
  update function used for bind state machine
 */
void AP_RCProtocol_DSM::update(void)
{
#if defined(HAL_GPIO_SPEKTRUM_PWR) && defined(HAL_GPIO_SPEKTRUM_RC)
    switch (bind_state) {
    case BIND_STATE_NONE:
        break;

    case BIND_STATE1:
        hal.gpio->write(HAL_GPIO_SPEKTRUM_PWR, !HAL_SPEKTRUM_PWR_ENABLED);
        hal.gpio->pinMode(HAL_GPIO_SPEKTRUM_RC, 1);
        hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 1);
        bind_last_ms = AP_HAL::millis();
        bind_state = BIND_STATE2;
        break;

    case BIND_STATE2: {
        uint32_t now = AP_HAL::millis();
        if (now - bind_last_ms > 500) {
            hal.gpio->write(HAL_GPIO_SPEKTRUM_PWR, HAL_SPEKTRUM_PWR_ENABLED);
            bind_last_ms = now;
            bind_state = BIND_STATE3;
        }
        break;
    }

    case BIND_STATE3: {
        uint32_t now = AP_HAL::millis();
        if (now - bind_last_ms > 72) {
            // 9 pulses works with all satellite receivers, and supports the highest
            // available protocol
            const uint8_t num_pulses = 9;
            for (uint8_t i=0; i<num_pulses; i++) {
                hal.scheduler->delay_microseconds(120);
                hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 0);
                hal.scheduler->delay_microseconds(120);
                hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 1);                
            }
            bind_last_ms = now;
            bind_state = BIND_STATE4;
        }
        break;
    }
        
    case BIND_STATE4: {
        uint32_t now = AP_HAL::millis();
        if (now - bind_last_ms > 50) {
            hal.gpio->pinMode(HAL_GPIO_SPEKTRUM_RC, 0);
            bind_state = BIND_STATE_NONE;
        }
        break;
    }
    }
#endif
}