/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. * * Code by Andrew Tridgell and Siddharth Bharat Purohit */ /* with thanks to PX4 dsm.c for DSM decoding approach */ #include "AP_RCProtocol_DSM.h" extern const AP_HAL::HAL& hal; // #define DEBUG #ifdef DEBUG # define debug(fmt, args...) hal.console->printf(fmt "\n", ##args) #else # define debug(fmt, args...) do {} while(0) #endif #define DSM_FRAME_SIZE 16 /**<DSM frame size in bytes*/ #define DSM_FRAME_CHANNELS 7 /**<Max supported DSM channels*/ void AP_RCProtocol_DSM::process_pulse(uint32_t width_s0, uint32_t width_s1) { // convert to bit widths, allowing for up to about 4usec error, assuming 115200 bps uint16_t bits_s0 = ((width_s0+4)*(uint32_t)115200) / 1000000; uint16_t bits_s1 = ((width_s1+4)*(uint32_t)115200) / 1000000; uint8_t bit_ofs, byte_ofs; uint16_t nbits; if (bits_s0 == 0 || bits_s1 == 0) { // invalid data goto reset; } byte_ofs = dsm_state.bit_ofs/10; bit_ofs = dsm_state.bit_ofs%10; if(byte_ofs > 15) { // invalid data goto reset; } // pull in the high bits nbits = bits_s0; if (nbits+bit_ofs > 10) { nbits = 10 - bit_ofs; } dsm_state.bytes[byte_ofs] |= ((1U<<nbits)-1) << bit_ofs; dsm_state.bit_ofs += nbits; bit_ofs += nbits; if (bits_s0 - nbits > 10) { if (dsm_state.bit_ofs == 16*10) { // we have a full frame uint8_t bytes[16]; uint8_t i; for (i=0; i<16; i++) { // get raw data uint16_t v = dsm_state.bytes[i]; // check start bit if ((v & 1) != 0) { goto reset; } // check stop bits if ((v & 0x200) != 0x200) { goto reset; } bytes[i] = ((v>>1) & 0xFF); } uint16_t values[8]; uint16_t num_values=0; if (dsm_decode(AP_HAL::micros64(), bytes, values, &num_values, 8) && num_values >= MIN_RCIN_CHANNELS) { add_input(num_values, values, false); } } memset(&dsm_state, 0, sizeof(dsm_state)); } byte_ofs = dsm_state.bit_ofs/10; bit_ofs = dsm_state.bit_ofs%10; if (bits_s1+bit_ofs > 10) { // invalid data goto reset; } // pull in the low bits dsm_state.bit_ofs += bits_s1; return; reset: memset(&dsm_state, 0, sizeof(dsm_state)); } /** * Attempt to decode a single channel raw channel datum * * The DSM* protocol doesn't provide any explicit framing, * so we detect dsm frame boundaries by the inter-dsm frame delay. * * The minimum dsm frame spacing is 11ms; with 16 bytes at 115200bps * dsm frame transmission time is ~1.4ms. * * We expect to only be called when bytes arrive for processing, * and if an interval of more than 5ms passes between calls, * the first byte we read will be the first byte of a dsm frame. * * In the case where byte(s) are dropped from a dsm frame, this also * provides a degree of protection. Of course, it would be better * if we didn't drop bytes... * * Upon receiving a full dsm frame we attempt to decode it * * @param[in] raw 16 bit raw channel value from dsm frame * @param[in] shift position of channel number in raw data * @param[out] channel pointer to returned channel number * @param[out] value pointer to returned channel value * @return true=raw value successfully decoded */ bool AP_RCProtocol_DSM::dsm_decode_channel(uint16_t raw, unsigned shift, unsigned *channel, unsigned *value) { if (raw == 0xffff) return false; *channel = (raw >> shift) & 0xf; uint16_t data_mask = (1 << shift) - 1; *value = raw & data_mask; //debug("DSM: %d 0x%04x -> %d %d", shift, raw, *channel, *value); return true; } /** * Attempt to guess if receiving 10 or 11 bit channel values * * @param[in] reset true=reset the 10/11 bit state to unknown */ void AP_RCProtocol_DSM::dsm_guess_format(bool reset, const uint8_t dsm_frame[16]) { static uint32_t cs10; static uint32_t cs11; static unsigned samples; /* reset the 10/11 bit sniffed channel masks */ if (reset) { cs10 = 0; cs11 = 0; samples = 0; dsm_channel_shift = 0; return; } /* scan the channels in the current dsm_frame in both 10- and 11-bit mode */ for (unsigned i = 0; i < DSM_FRAME_CHANNELS; i++) { const uint8_t *dp = &dsm_frame[2 + (2 * i)]; uint16_t raw = (dp[0] << 8) | dp[1]; unsigned channel, value; /* if the channel decodes, remember the assigned number */ if (dsm_decode_channel(raw, 10, &channel, &value) && (channel < 31)) cs10 |= (1 << channel); if (dsm_decode_channel(raw, 11, &channel, &value) && (channel < 31)) cs11 |= (1 << channel); /* XXX if we cared, we could look for the phase bit here to decide 1 vs. 2-dsm_frame format */ } /* wait until we have seen plenty of frames - 5 should normally be enough */ if (samples++ < 5) return; /* * Iterate the set of sensible sniffed channel sets and see whether * decoding in 10 or 11-bit mode has yielded anything we recognize. * * XXX Note that due to what seem to be bugs in the DSM2 high-resolution * stream, we may want to sniff for longer in some cases when we think we * are talking to a DSM2 receiver in high-resolution mode (so that we can * reject it, ideally). * See e.g. http://git.openpilot.org/cru/OPReview-116 for a discussion * of this issue. */ static uint32_t masks[] = { 0x3f, /* 6 channels (DX6) */ 0x7f, /* 7 channels (DX7) */ 0xff, /* 8 channels (DX8) */ 0x1ff, /* 9 channels (DX9, etc.) */ 0x3ff, /* 10 channels (DX10) */ 0x1fff, /* 13 channels (DX10t) */ 0x3fff /* 18 channels (DX10) */ }; unsigned votes10 = 0; unsigned votes11 = 0; for (unsigned i = 0; i < sizeof(masks)/sizeof(masks[0]); i++) { if (cs10 == masks[i]) votes10++; if (cs11 == masks[i]) votes11++; } if ((votes11 == 1) && (votes10 == 0)) { dsm_channel_shift = 11; debug("DSM: 11-bit format"); return; } if ((votes10 == 1) && (votes11 == 0)) { dsm_channel_shift = 10; debug("DSM: 10-bit format"); return; } /* call ourselves to reset our state ... we have to try again */ debug("DSM: format detect fail, 10: 0x%08x %d 11: 0x%08x %d", cs10, votes10, cs11, votes11); dsm_guess_format(true, dsm_frame); } /** * Decode the entire dsm frame (all contained channels) * */ bool AP_RCProtocol_DSM::dsm_decode(uint64_t frame_time, const uint8_t dsm_frame[16], uint16_t *values, uint16_t *num_values, uint16_t max_values) { #if 0 debug("DSM dsm_frame %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x", dsm_frame[0], dsm_frame[1], dsm_frame[2], dsm_frame[3], dsm_frame[4], dsm_frame[5], dsm_frame[6], dsm_frame[7], dsm_frame[8], dsm_frame[9], dsm_frame[10], dsm_frame[11], dsm_frame[12], dsm_frame[13], dsm_frame[14], dsm_frame[15]); #endif /* * If we have lost signal for at least a second, reset the * format guessing heuristic. */ if (((frame_time - dsm_last_frame_time) > 1000000) && (dsm_channel_shift != 0)) { dsm_guess_format(true, dsm_frame); } /* we have received something we think is a dsm_frame */ dsm_last_frame_time = frame_time; /* if we don't know the dsm_frame format, update the guessing state machine */ if (dsm_channel_shift == 0) { dsm_guess_format(false, dsm_frame); return false; } /* * The encoding of the first two bytes is uncertain, so we're * going to ignore them for now. * * Each channel is a 16-bit unsigned value containing either a 10- * or 11-bit channel value and a 4-bit channel number, shifted * either 10 or 11 bits. The MSB may also be set to indicate the * second dsm_frame in variants of the protocol where more than * seven channels are being transmitted. */ for (unsigned i = 0; i < DSM_FRAME_CHANNELS; i++) { const uint8_t *dp = &dsm_frame[2 + (2 * i)]; uint16_t raw = (dp[0] << 8) | dp[1]; unsigned channel, value; if (!dsm_decode_channel(raw, dsm_channel_shift, &channel, &value)) continue; /* ignore channels out of range */ if (channel >= max_values) continue; /* update the decoded channel count */ if (channel >= *num_values) *num_values = channel + 1; /* convert 0-1024 / 0-2048 values to 1000-2000 ppm encoding. */ if (dsm_channel_shift == 10) value *= 2; /* * Spektrum scaling is special. There are these basic considerations * * * Midpoint is 1520 us * * 100% travel channels are +- 400 us * * We obey the original Spektrum scaling (so a default setup will scale from * 1100 - 1900 us), but we do not obey the weird 1520 us center point * and instead (correctly) center the center around 1500 us. This is in order * to get something useful without requiring the user to calibrate on a digital * link for no reason. */ /* scaled integer for decent accuracy while staying efficient */ value = ((((int)value - 1024) * 1000) / 1700) + 1500; /* * Store the decoded channel into the R/C input buffer, taking into * account the different ideas about channel assignement that we have. * * Specifically, the first four channels in rc_channel_data are roll, pitch, thrust, yaw, * but the first four channels from the DSM receiver are thrust, roll, pitch, yaw. */ switch (channel) { case 0: channel = 2; break; case 1: channel = 0; break; case 2: channel = 1; default: break; } values[channel] = value; } /* * Spektrum likes to send junk in higher channel numbers to fill * their packets. We don't know about a 13 channel model in their TX * lines, so if we get a channel count of 13, we'll return 12 (the last * data index that is stable). */ if (*num_values == 13) *num_values = 12; #if 0 if (dsm_channel_shift == 11) { /* Set the 11-bit data indicator */ *num_values |= 0x8000; } #endif /* * XXX Note that we may be in failsafe here; we need to work out how to detect that. */ return true; } /* start bind on DSM satellites */ void AP_RCProtocol_DSM::start_bind(void) { bind_state = BIND_STATE1; } /* update function used for bind state machine */ void AP_RCProtocol_DSM::update(void) { #if defined(HAL_GPIO_SPEKTRUM_PWR) && defined(HAL_GPIO_SPEKTRUM_RC) switch (bind_state) { case BIND_STATE_NONE: break; case BIND_STATE1: hal.gpio->write(HAL_GPIO_SPEKTRUM_PWR, !HAL_SPEKTRUM_PWR_ENABLED); hal.gpio->pinMode(HAL_GPIO_SPEKTRUM_RC, 1); hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 1); bind_last_ms = AP_HAL::millis(); bind_state = BIND_STATE2; break; case BIND_STATE2: { uint32_t now = AP_HAL::millis(); if (now - bind_last_ms > 500) { hal.gpio->write(HAL_GPIO_SPEKTRUM_PWR, HAL_SPEKTRUM_PWR_ENABLED); bind_last_ms = now; bind_state = BIND_STATE3; } break; } case BIND_STATE3: { uint32_t now = AP_HAL::millis(); if (now - bind_last_ms > 72) { // 9 pulses works with all satellite receivers, and supports the highest // available protocol const uint8_t num_pulses = 9; for (uint8_t i=0; i<num_pulses; i++) { hal.scheduler->delay_microseconds(120); hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 0); hal.scheduler->delay_microseconds(120); hal.gpio->write(HAL_GPIO_SPEKTRUM_RC, 1); } bind_last_ms = now; bind_state = BIND_STATE4; } break; } case BIND_STATE4: { uint32_t now = AP_HAL::millis(); if (now - bind_last_ms > 50) { hal.gpio->pinMode(HAL_GPIO_SPEKTRUM_RC, 0); bind_state = BIND_STATE_NONE; } break; } } #endif }