// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * RC_Channel.cpp - Radio library for Arduino * Code by Jason Short. DIYDrones.com * */ #include <stdlib.h> #include <cmath> #include <AP_HAL/AP_HAL.h> extern const AP_HAL::HAL& hal; #include <AP_Math/AP_Math.h> #include "RC_Channel.h" /// global array with pointers to all APM RC channels, will be used by AP_Mount /// and AP_Camera classes / It points to RC input channels. RC_Channel *RC_Channel::_rc_ch[RC_MAX_CHANNELS]; const AP_Param::GroupInfo RC_Channel::var_info[] = { // @Param: MIN // @DisplayName: RC min PWM // @Description: RC minimum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: pwm // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO_FLAGS("MIN", 0, RC_Channel, _radio_min, 1100, AP_PARAM_NO_SHIFT), // @Param: TRIM // @DisplayName: RC trim PWM // @Description: RC trim (neutral) PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: pwm // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("TRIM", 1, RC_Channel, _radio_trim, 1500), // @Param: MAX // @DisplayName: RC max PWM // @Description: RC maximum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit. // @Units: pwm // @Range: 800 2200 // @Increment: 1 // @User: Advanced AP_GROUPINFO("MAX", 2, RC_Channel, _radio_max, 1900), // @Param: REV // @DisplayName: RC reverse // @Description: Reverse servo operation. Set to 1 for normal (forward) operation. Set to -1 to reverse this channel. // @Values: -1:Reversed,1:Normal // @User: Advanced AP_GROUPINFO("REV", 3, RC_Channel, _reverse, 1), // Note: index 4 was used by the previous _dead_zone value. We // changed it to 5 as dead zone values had previously been // incorrectly saved, overriding user values. They were also // incorrectly interpreted for the throttle on APM:Plane // @Param: DZ // @DisplayName: RC dead-zone // @Description: dead zone around trim or bottom // @Units: pwm // @Range: 0 200 // @User: Advanced AP_GROUPINFO("DZ", 5, RC_Channel, _dead_zone, 0), AP_GROUPEND }; // setup the control preferences void RC_Channel::set_range(int16_t low, int16_t high) { set_range_in(low, high); set_range_out(low, high); } void RC_Channel::set_range_out(int16_t low, int16_t high) { _type_out = RC_CHANNEL_TYPE_RANGE; _high_out = high; _low_out = low; } void RC_Channel::set_range_in(int16_t low, int16_t high) { _type_in = RC_CHANNEL_TYPE_RANGE; _high_in = high; _low_in = low; } void RC_Channel::set_angle(int16_t angle) { set_angle_in(angle); set_angle_out(angle); } void RC_Channel::set_angle_out(int16_t angle) { _type_out = RC_CHANNEL_TYPE_ANGLE; _high_out = angle; } void RC_Channel::set_angle_in(int16_t angle) { _type_in = RC_CHANNEL_TYPE_ANGLE; _high_in = angle; } void RC_Channel::set_default_dead_zone(int16_t dzone) { _dead_zone.set_default(abs(dzone)); } void RC_Channel::set_reverse(bool reverse) { if (reverse) _reverse = -1; else _reverse = 1; } bool RC_Channel::get_reverse(void) const { if (_reverse == -1) { return true; } return false; } void RC_Channel::set_type(uint8_t t) { set_type_in(t); set_type_out(t); } void RC_Channel::set_type_in(uint8_t t) { _type_in = t; } void RC_Channel::set_type_out(uint8_t t) { _type_out = t; } // call after first read void RC_Channel::trim() { _radio_trim = _radio_in; } // read input from APM_RC - create a control_in value void RC_Channel::set_pwm(int16_t pwm) { _radio_in = pwm; if (_type_in == RC_CHANNEL_TYPE_RANGE) { _control_in = pwm_to_range(); } else { //RC_CHANNEL_TYPE_ANGLE, RC_CHANNEL_TYPE_ANGLE_RAW _control_in = pwm_to_angle(); } } /* call read() and set_pwm() on all channels */ void RC_Channel::set_pwm_all(void) { for (uint8_t i=0; i<RC_MAX_CHANNELS; i++) { if (_rc_ch[i] != NULL) { _rc_ch[i]->set_pwm(_rc_ch[i]->read()); } } } // read input from APM_RC - create a control_in value, but use a // zero value for the dead zone. When done this way the control_in // value can be used as servo_out to give the same output as input void RC_Channel::set_pwm_no_deadzone(int16_t pwm) { _radio_in = pwm; if (_type_in == RC_CHANNEL_TYPE_RANGE) { _control_in = pwm_to_range_dz(0); } else { //RC_CHANNEL_ANGLE, RC_CHANNEL_ANGLE_RAW _control_in = pwm_to_angle_dz(0); } } // returns just the PWM without the offset from radio_min void RC_Channel::calc_pwm(void) { if(_type_out == RC_CHANNEL_TYPE_RANGE) { _pwm_out = range_to_pwm(); _radio_out = (_reverse >= 0) ? (_radio_min + _pwm_out) : (_radio_max - _pwm_out); }else if(_type_out == RC_CHANNEL_TYPE_ANGLE_RAW) { _pwm_out = (float)_servo_out * 0.1f; int16_t reverse_mul = (_reverse==-1?-1:1); _radio_out = (_pwm_out * reverse_mul) + _radio_trim; }else{ // RC_CHANNEL_TYPE_ANGLE _pwm_out = angle_to_pwm(); _radio_out = _pwm_out + _radio_trim; } _radio_out = constrain_int16(_radio_out, _radio_min.get(), _radio_max.get()); } /* return the center stick position expressed as a control_in value used for thr_mid in copter */ int16_t RC_Channel::get_control_mid() const { if (_type_in == RC_CHANNEL_TYPE_RANGE) { int16_t r_in = (_radio_min.get()+_radio_max.get())/2; if (_reverse == -1) { r_in = _radio_max.get() - (r_in - _radio_min.get()); } int16_t radio_trim_low = _radio_min + _dead_zone; return (_low_in + ((int32_t)(_high_in - _low_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(_radio_max - radio_trim_low)); } else { return 0; } } // ------------------------------------------ void RC_Channel::load_eeprom(void) { _radio_min.load(); _radio_trim.load(); _radio_max.load(); _reverse.load(); _dead_zone.load(); } void RC_Channel::save_eeprom(void) { _radio_min.save(); _radio_trim.save(); _radio_max.save(); _reverse.save(); _dead_zone.save(); } // ------------------------------------------ void RC_Channel::zero_min_max() { _radio_min = _radio_max = _radio_in; } void RC_Channel::update_min_max() { _radio_min = MIN(_radio_min.get(), _radio_in); _radio_max = MAX(_radio_max.get(), _radio_in); } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value using the specified dead_zone */ int16_t RC_Channel::pwm_to_angle_dz_trim(uint16_t dead_zone, uint16_t _trim) { int16_t radio_trim_high = _trim + dead_zone; int16_t radio_trim_low = _trim - dead_zone; // prevent div by 0 if ((radio_trim_low - _radio_min) == 0 || (_radio_max - radio_trim_high) == 0) return 0; int16_t reverse_mul = (_reverse==-1?-1:1); if(_radio_in > radio_trim_high) { return reverse_mul * ((int32_t)_high_in * (int32_t)(_radio_in - radio_trim_high)) / (int32_t)(_radio_max - radio_trim_high); }else if(_radio_in < radio_trim_low) { return reverse_mul * ((int32_t)_high_in * (int32_t)(_radio_in - radio_trim_low)) / (int32_t)(radio_trim_low - _radio_min); }else return 0; } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value using the specified dead_zone */ int16_t RC_Channel::pwm_to_angle_dz(uint16_t dead_zone) { return pwm_to_angle_dz_trim(dead_zone, _radio_trim); } /* return an "angle in centidegrees" (normally -4500 to 4500) from the current radio_in value */ int16_t RC_Channel::pwm_to_angle() { return pwm_to_angle_dz(_dead_zone); } int16_t RC_Channel::angle_to_pwm() { int16_t reverse_mul = (_reverse==-1?-1:1); if((_servo_out * reverse_mul) > 0) { return reverse_mul * ((int32_t)_servo_out * (int32_t)(_radio_max - _radio_trim)) / (int32_t)_high_out; } else { return reverse_mul * ((int32_t)_servo_out * (int32_t)(_radio_trim - _radio_min)) / (int32_t)_high_out; } } /* convert a pulse width modulation value to a value in the configured range, using the specified deadzone */ int16_t RC_Channel::pwm_to_range_dz(uint16_t dead_zone) { int16_t r_in = constrain_int16(_radio_in, _radio_min.get(), _radio_max.get()); if (_reverse == -1) { r_in = _radio_max.get() - (r_in - _radio_min.get()); } int16_t radio_trim_low = _radio_min + dead_zone; if (r_in > radio_trim_low) return (_low_in + ((int32_t)(_high_in - _low_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(_radio_max - radio_trim_low)); else if (dead_zone > 0) return 0; else return _low_in; } /* convert a pulse width modulation value to a value in the configured range */ int16_t RC_Channel::pwm_to_range() { return pwm_to_range_dz(_dead_zone); } int16_t RC_Channel::range_to_pwm() { if (_high_out == _low_out) { return _radio_trim; } return ((int32_t)(_servo_out - _low_out) * (int32_t)(_radio_max - _radio_min)) / (int32_t)(_high_out - _low_out); } // ------------------------------------------ float RC_Channel::norm_input() { float ret; int16_t reverse_mul = (_reverse==-1?-1:1); if (_radio_in < _radio_trim) { if (_radio_min >= _radio_trim) { return 0.0f; } ret = reverse_mul * (float)(_radio_in - _radio_trim) / (float)(_radio_trim - _radio_min); } else { if (_radio_max <= _radio_trim) { return 0.0f; } ret = reverse_mul * (float)(_radio_in - _radio_trim) / (float)(_radio_max - _radio_trim); } return constrain_float(ret, -1.0f, 1.0f); } float RC_Channel::norm_input_dz() { int16_t dz_min = _radio_trim - _dead_zone; int16_t dz_max = _radio_trim + _dead_zone; float ret; int16_t reverse_mul = (_reverse==-1?-1:1); if (_radio_in < dz_min && dz_min > _radio_min) { ret = reverse_mul * (float)(_radio_in - dz_min) / (float)(dz_min - _radio_min); } else if (_radio_in > dz_max && _radio_max > dz_max) { ret = reverse_mul * (float)(_radio_in - dz_max) / (float)(_radio_max - dz_max); } else { ret = 0; } return constrain_float(ret, -1.0f, 1.0f); } /* get percentage input from 0 to 100. This ignores the trim value. */ uint8_t RC_Channel::percent_input() { if (_radio_in <= _radio_min) { return _reverse==-1?100:0; } if (_radio_in >= _radio_max) { return _reverse==-1?0:100; } uint8_t ret = 100.0f * (_radio_in - _radio_min) / (float)(_radio_max - _radio_min); if (_reverse == -1) { ret = 100 - ret; } return ret; } float RC_Channel::norm_output() { int16_t mid = (_radio_max + _radio_min) / 2; float ret; if (mid <= _radio_min) { return 0; } if (_radio_out < mid) { ret = (float)(_radio_out - mid) / (float)(mid - _radio_min); } else if (_radio_out > mid) { ret = (float)(_radio_out - mid) / (float)(_radio_max - mid); } else { ret = 0; } if (_reverse == -1) { ret = -ret; } return ret; } void RC_Channel::output() const { hal.rcout->write(_ch_out, _radio_out); } void RC_Channel::output_trim() const { hal.rcout->write(_ch_out, _radio_trim); } void RC_Channel::output_trim_all() { for (uint8_t i=0; i<RC_MAX_CHANNELS; i++) { if (_rc_ch[i] != NULL) { _rc_ch[i]->output_trim(); } } } /* setup the failsafe value to the trim value for all channels in chmask */ void RC_Channel::setup_failsafe_trim_mask(uint16_t chmask) { for (uint8_t i=0; i<RC_MAX_CHANNELS; i++) { if (_rc_ch[i] != NULL && ((1U<<i)&chmask)) { hal.rcout->set_failsafe_pwm(1U<<i, _rc_ch[i]->_radio_trim); } } } /* setup the failsafe value to the trim value for all channels */ void RC_Channel::setup_failsafe_trim_all() { setup_failsafe_trim_mask(0xFFFF); } void RC_Channel::input() { _radio_in = hal.rcin->read(_ch_out); } uint16_t RC_Channel::read() const { return hal.rcin->read(_ch_out); } void RC_Channel::enable_out() { hal.rcout->enable_ch(_ch_out); } void RC_Channel::disable_out() { hal.rcout->disable_ch(_ch_out); } RC_Channel *RC_Channel::rc_channel(uint8_t i) { if (i >= RC_MAX_CHANNELS) { return NULL; } return _rc_ch[i]; } // return a limit PWM value uint16_t RC_Channel::get_limit_pwm(LimitValue limit) const { switch (limit) { case RC_CHANNEL_LIMIT_TRIM: return _radio_trim; case RC_CHANNEL_LIMIT_MAX: return get_reverse() ? _radio_min : _radio_max; case RC_CHANNEL_LIMIT_MIN: return get_reverse() ? _radio_max : _radio_min; } // invalid limit value, return trim return _radio_trim; } /* Return true if the channel is at trim and within the DZ */ bool RC_Channel::in_trim_dz() { return is_bounded_int32(_radio_in, _radio_trim - _dead_zone, _radio_trim + _dead_zone); }