#include <AP_HAL/AP_HAL.h>

#if CONFIG_HAL_BOARD == HAL_BOARD_SITL

#include "AP_HAL_SITL.h"
#include "AP_HAL_SITL_Namespace.h"
#include "HAL_SITL_Class.h"
#include "UARTDriver.h"
#include "Scheduler.h"

#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/select.h>

#include <AP_Param/AP_Param.h>
#include <SITL/SIM_JSBSim.h>
#include <AP_HAL/utility/Socket.h>

extern const AP_HAL::HAL& hal;

using namespace HALSITL;

void SITL_State::_set_param_default(const char *parm)
{
    char *pdup = strdup(parm);
    char *p = strchr(pdup, '=');
    if (p == nullptr) {
        printf("Please specify parameter as NAME=VALUE");
        exit(1);
    }
    float value = strtof(p+1, nullptr);
    *p = 0;
    enum ap_var_type var_type;
    AP_Param *vp = AP_Param::find(pdup, &var_type);
    if (vp == nullptr) {
        printf("Unknown parameter %s\n", pdup);
        exit(1);
    }
    if (var_type == AP_PARAM_FLOAT) {
        ((AP_Float *)vp)->set_and_save(value);
    } else if (var_type == AP_PARAM_INT32) {
        ((AP_Int32 *)vp)->set_and_save(value);
    } else if (var_type == AP_PARAM_INT16) {
        ((AP_Int16 *)vp)->set_and_save(value);
    } else if (var_type == AP_PARAM_INT8) {
        ((AP_Int8 *)vp)->set_and_save(value);
    } else {
        printf("Unable to set parameter %s\n", pdup);
        exit(1);
    }
    printf("Set parameter %s to %f\n", pdup, value);
    free(pdup);
}


/*
  setup for SITL handling
 */
void SITL_State::_sitl_setup(const char *home_str)
{
    _home_str = home_str;

#if !defined(__CYGWIN__) && !defined(__CYGWIN64__)
    _parent_pid = getppid();
#endif

#ifndef HIL_MODE
    _setup_fdm();
#endif
    fprintf(stdout, "Starting SITL input\n");

    // find the barometer object if it exists
    _sitl = AP::sitl();
    _barometer = AP_Baro::get_singleton();
    _ins = AP_InertialSensor::get_singleton();
    _compass = Compass::get_singleton();
#if AP_TERRAIN_AVAILABLE
    _terrain = reinterpret_cast<AP_Terrain *>(AP_Param::find_object("TERRAIN_"));
#endif

    if (_sitl != nullptr) {
        // setup some initial values
#ifndef HIL_MODE
        _update_airspeed(0);
        _update_gps(0, 0, 0, 0, 0, 0, 0, false);
        _update_rangefinder(0);
#endif
        if (enable_gimbal) {
            gimbal = new SITL::Gimbal(_sitl->state);
        }

        sitl_model->set_buzzer(&_sitl->buzzer_sim);
        sitl_model->set_sprayer(&_sitl->sprayer_sim);
        sitl_model->set_gripper_servo(&_sitl->gripper_sim);
        sitl_model->set_gripper_epm(&_sitl->gripper_epm_sim);
        sitl_model->set_parachute(&_sitl->parachute_sim);
        sitl_model->set_precland(&_sitl->precland_sim);

        if (_use_fg_view) {
            fg_socket.connect(_fg_address, _fg_view_port);
        }

        fprintf(stdout, "Using Irlock at port : %d\n", _irlock_port);
        _sitl->irlock_port = _irlock_port;
    }

    if (_synthetic_clock_mode) {
        // start with non-zero clock
        hal.scheduler->stop_clock(1);
    }
}


#ifndef HIL_MODE
/*
  setup a SITL FDM listening UDP port
 */
void SITL_State::_setup_fdm(void)
{
    if (!_sitl_rc_in.reuseaddress()) {
        fprintf(stderr, "SITL: socket reuseaddress failed on RC in port: %d - %s\n", _rcin_port, strerror(errno));
        fprintf(stderr, "Aborting launch...\n");
        exit(1);
    }
    if (!_sitl_rc_in.bind("0.0.0.0", _rcin_port)) {
        fprintf(stderr, "SITL: socket bind failed on RC in port : %d - %s\n", _rcin_port, strerror(errno));
        fprintf(stderr, "Aborting launch...\n");
        exit(1);
    }
    if (!_sitl_rc_in.set_blocking(false)) {
        fprintf(stderr, "SITL: socket set_blocking(false) failed on RC in port: %d - %s\n", _rcin_port, strerror(errno));
        fprintf(stderr, "Aborting launch...\n");
        exit(1);
    }
    if (!_sitl_rc_in.set_cloexec()) {
        fprintf(stderr, "SITL: socket set_cloexec() failed on RC in port: %d - %s\n", _rcin_port, strerror(errno));
        fprintf(stderr, "Aborting launch...\n");
        exit(1);
    }
}
#endif


/*
  step the FDM by one time step
 */
void SITL_State::_fdm_input_step(void)
{
    static uint32_t last_pwm_input = 0;

    _fdm_input_local();

    /* make sure we die if our parent dies */
    if (kill(_parent_pid, 0) != 0) {
        exit(1);
    }

    if (_scheduler->interrupts_are_blocked() || _sitl == nullptr) {
        return;
    }

    // simulate RC input at 50Hz
    if (AP_HAL::millis() - last_pwm_input >= 20 && _sitl->rc_fail != SITL::SITL::SITL_RCFail_NoPulses) {
        last_pwm_input = AP_HAL::millis();
        new_rc_input = true;
    }

    _scheduler->sitl_begin_atomic();

    if (_update_count == 0 && _sitl != nullptr) {
        _update_gps(0, 0, 0, 0, 0, 0, 0, false);
        _scheduler->timer_event();
        _scheduler->sitl_end_atomic();
        return;
    }

    if (_sitl != nullptr) {
        _update_gps(_sitl->state.latitude, _sitl->state.longitude,
                    _sitl->state.altitude,
                    _sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD,
                    _sitl->state.yawDeg,
                    !_sitl->gps_disable);
        _update_airspeed(_sitl->state.airspeed);
        _update_rangefinder(_sitl->state.range);

        if (_sitl->adsb_plane_count >= 0 &&
            adsb == nullptr) {
            adsb = new SITL::ADSB(_sitl->state, _home_str);
        } else if (_sitl->adsb_plane_count == -1 &&
                   adsb != nullptr) {
            delete adsb;
            adsb = nullptr;
        }
    }

    // trigger all APM timers.
    _scheduler->timer_event();
    _scheduler->sitl_end_atomic();
}


void SITL_State::wait_clock(uint64_t wait_time_usec)
{
    while (AP_HAL::micros64() < wait_time_usec) {
        if (hal.scheduler->in_main_thread() ||
            Scheduler::from(hal.scheduler)->semaphore_wait_hack_required()) {
            _fdm_input_step();
        } else {
            usleep(1000);
        }
    }
}

#define streq(a, b) (!strcmp(a, b))
int SITL_State::sim_fd(const char *name, const char *arg)
{
    if (streq(name, "vicon")) {
        if (vicon != nullptr) {
            AP_HAL::panic("Only one vicon system at a time");
        }
        vicon = new SITL::Vicon();
        return vicon->fd();
    }
    AP_HAL::panic("unknown simulated device: %s", name);
}

#ifndef HIL_MODE
/*
  check for a SITL RC input packet
 */
void SITL_State::_check_rc_input(void)
{
    uint32_t count = 0;
    while (_read_rc_sitl_input()) {
        count++;
    }

    if (count > 100) {
        ::fprintf(stderr, "Read %u rc inputs\n", count);
    }
}

bool SITL_State::_read_rc_sitl_input()
{
    struct pwm_packet {
        uint16_t pwm[16];
    } pwm_pkt;

    const ssize_t size = _sitl_rc_in.recv(&pwm_pkt, sizeof(pwm_pkt), 0);
    switch (size) {
    case -1:
        return false;
    case 8*2:
    case 16*2: {
        // a packet giving the receiver PWM inputs
        for (uint8_t i=0; i<size/2; i++) {
            // setup the pwm input for the RC channel inputs
            if (i < _sitl->state.rcin_chan_count) {
                // we're using rc from simulator
                continue;
            }
            uint16_t pwm = pwm_pkt.pwm[i];
            if (pwm != 0) {
                if (_sitl->rc_fail == SITL::SITL::SITL_RCFail_Throttle950) {
                    if (i == 2) {
                        // set throttle (assumed to be on channel 3...)
                        pwm = 950;
                    } else {
                        // centre all other inputs
                        pwm = 1500;
                    }
                }
                pwm_input[i] = pwm;
            }
        }
        return true;
    }
    default:
        fprintf(stderr, "Malformed SITL RC input (%li)", size);
    }
    return false;
}

/*
  output current state to flightgear
 */
void SITL_State::_output_to_flightgear(void)
{
    SITL::FGNetFDM fdm {};
    const SITL::sitl_fdm &sfdm = _sitl->state;

    fdm.version = 0x18;
    fdm.padding = 0;
    fdm.longitude = DEG_TO_RAD_DOUBLE*sfdm.longitude;
    fdm.latitude = DEG_TO_RAD_DOUBLE*sfdm.latitude;
    fdm.altitude = sfdm.altitude;
    fdm.agl = sfdm.altitude;
    fdm.phi   = radians(sfdm.rollDeg);
    fdm.theta = radians(sfdm.pitchDeg);
    fdm.psi   = radians(sfdm.yawDeg);
    if (_vehicle == ArduCopter) {
        fdm.num_engines = 4;
        for (uint8_t i=0; i<4; i++) {
            fdm.rpm[i] = constrain_float((pwm_output[i]-1000), 0, 1000);
        }
    } else {
        fdm.num_engines = 4;
        fdm.rpm[0] = constrain_float((pwm_output[2]-1000)*3, 0, 3000);
        // for quadplane
        fdm.rpm[1] = constrain_float((pwm_output[5]-1000)*12, 0, 12000);
        fdm.rpm[2] = constrain_float((pwm_output[6]-1000)*12, 0, 12000);
        fdm.rpm[3] = constrain_float((pwm_output[7]-1000)*12, 0, 12000);
    }
    fdm.ByteSwap();

    fg_socket.send(&fdm, sizeof(fdm));
}

/*
  get FDM input from a local model
 */
void SITL_State::_fdm_input_local(void)
{
    struct sitl_input input;

    // check for direct RC input
    _check_rc_input();

    // construct servos structure for FDM
    _simulator_servos(input);

    // update the model
    sitl_model->update_model(input);

    // get FDM output from the model
    if (_sitl) {
        sitl_model->fill_fdm(_sitl->state);
        _sitl->update_rate_hz = sitl_model->get_rate_hz();

        if (_sitl->rc_fail == SITL::SITL::SITL_RCFail_None) {
            for (uint8_t i=0; i< _sitl->state.rcin_chan_count; i++) {
                pwm_input[i] = 1000 + _sitl->state.rcin[i]*1000;
            }
        }
    }

    if (gimbal != nullptr) {
        gimbal->update();
    }
    if (adsb != nullptr) {
        adsb->update();
    }
    if (vicon != nullptr) {
        Quaternion attitude;
        sitl_model->get_attitude(attitude);
        vicon->update(sitl_model->get_location(),
                      sitl_model->get_position(),
                      attitude);
    }

    if (_sitl && _use_fg_view) {
        _output_to_flightgear();
    }

    // update simulation time
    if (_sitl) {
        hal.scheduler->stop_clock(_sitl->state.timestamp_us);
    } else {
        hal.scheduler->stop_clock(AP_HAL::micros64()+100);
    }

    set_height_agl();

    _synthetic_clock_mode = true;
    _update_count++;
}
#endif

/*
  create sitl_input structure for sending to FDM
 */
void SITL_State::_simulator_servos(struct sitl_input &input)
{
    static uint32_t last_update_usec;

    /* this maps the registers used for PWM outputs. The RC
     * driver updates these whenever it wants the channel output
     * to change */
    uint8_t i;

    if (last_update_usec == 0 || !output_ready) {
        for (i=0; i<SITL_NUM_CHANNELS; i++) {
            pwm_output[i] = 1000;
        }
        if (_vehicle == ArduPlane) {
            pwm_output[0] = pwm_output[1] = pwm_output[3] = 1500;
        }
        if (_vehicle == APMrover2) {
            pwm_output[0] = pwm_output[1] = pwm_output[2] = pwm_output[3] = 1500;
        }
    }

    // output at chosen framerate
    uint32_t now = AP_HAL::micros();
    last_update_usec = now;

    float altitude = _barometer?_barometer->get_altitude():0;
    float wind_speed = 0;
    float wind_direction = 0;
    float wind_dir_z = 0;

    // give 5 seconds to calibrate airspeed sensor at 0 wind speed
    if (wind_start_delay_micros == 0) {
        wind_start_delay_micros = now;
    } else if (_sitl && (now - wind_start_delay_micros) > 5000000 ) {
        // The EKF does not like step inputs so this LPF keeps it happy.
        wind_speed =     _sitl->wind_speed_active     = (0.95f*_sitl->wind_speed_active)     + (0.05f*_sitl->wind_speed);
        wind_direction = _sitl->wind_direction_active = (0.95f*_sitl->wind_direction_active) + (0.05f*_sitl->wind_direction);
        wind_dir_z =     _sitl->wind_dir_z_active     = (0.95f*_sitl->wind_dir_z_active)     + (0.05f*_sitl->wind_dir_z);
        
        // pass wind into simulators using different wind types via param SIM_WIND_T*.
        switch (_sitl->wind_type) {
        case SITL::SITL::WIND_TYPE_SQRT:
            if (altitude < _sitl->wind_type_alt) {
                wind_speed *= sqrtf(MAX(altitude / _sitl->wind_type_alt, 0));
            }
            break;

        case SITL::SITL::WIND_TYPE_COEF:
            wind_speed += (altitude - _sitl->wind_type_alt) * _sitl->wind_type_coef;
            break;

        case SITL::SITL::WIND_TYPE_NO_LIMIT:
        default:
            break;
        }

        // never allow negative wind velocity
        wind_speed = MAX(wind_speed, 0);
    }

    input.wind.speed = wind_speed;
    input.wind.direction = wind_direction;
    input.wind.turbulence = _sitl?_sitl->wind_turbulance:0;
    input.wind.dir_z = wind_dir_z;

    for (i=0; i<SITL_NUM_CHANNELS; i++) {
        if (pwm_output[i] == 0xFFFF) {
            input.servos[i] = 0;
        } else {
            input.servos[i] = pwm_output[i];
        }
    }

    float engine_mul = _sitl?_sitl->engine_mul.get():1;
    uint8_t engine_fail = _sitl?_sitl->engine_fail.get():0;
    bool motors_on = false;
    
    if (engine_fail >= ARRAY_SIZE(input.servos)) {
        engine_fail = 0;
    }
    // apply engine multiplier to motor defined by the SIM_ENGINE_FAIL parameter
    if (_vehicle != APMrover2) {
        input.servos[engine_fail] = ((input.servos[engine_fail]-1000) * engine_mul) + 1000;
    } else {
        input.servos[engine_fail] = static_cast<uint16_t>(((input.servos[engine_fail] - 1500) * engine_mul) + 1500);
    }
    
    if (_vehicle == ArduPlane) {
        motors_on = ((input.servos[2] - 1000) / 1000.0f) > 0;
    } else if (_vehicle == APMrover2) {
        input.servos[2] = static_cast<uint16_t>(constrain_int16(input.servos[2], 1000, 2000));
        input.servos[0] = static_cast<uint16_t>(constrain_int16(input.servos[0], 1000, 2000));
        motors_on = !is_zero(((input.servos[2] - 1500) / 500.0f));
    } else {
        motors_on = false;
        // run checks on each motor
        for (i=0; i<4; i++) {
            // check motors do not exceed their limits
            if (input.servos[i] > 2000) input.servos[i] = 2000;
            if (input.servos[i] < 1000) input.servos[i] = 1000;
            // update motor_on flag
            if ((input.servos[i]-1000)/1000.0f > 0) {
                motors_on = true;
            }
        }
    }
    if (_sitl) {
        _sitl->motors_on = motors_on;
    }

    float voltage = 0;
    _current = 0;
    
    if (_sitl != nullptr) {
        if (_sitl->state.battery_voltage <= 0) {
            if (_vehicle == ArduSub) {
                voltage = _sitl->batt_voltage;
                for (i = 0; i < 6; i++) {
                    float pwm = input.servos[i];
                    //printf("i: %d, pwm: %.2f\n", i, pwm);
                    float fraction = fabsf((pwm - 1500) / 500.0f);

                    voltage -= fraction * 0.5f;

                    float draw = fraction * 15;
                    _current += draw;
                }
            } else {
                // simulate simple battery setup
                float throttle;
                if (_vehicle == APMrover2) {
                    throttle = motors_on ? (input.servos[2] - 1500) / 500.0f : 0;
                } else {
                    throttle = motors_on ? (input.servos[2] - 1000) / 1000.0f : 0;
                }
                // lose 0.7V at full throttle
                voltage = _sitl->batt_voltage - 0.7f*fabsf(throttle);

                // assume 50A at full throttle
                _current = 50.0f * fabsf(throttle);
            }
        } else {
            // FDM provides voltage and current
            voltage = _sitl->state.battery_voltage;
            _current = _sitl->state.battery_current;
        }
    }

    // assume 3DR power brick
    voltage_pin_value = ((voltage / 10.1f) / 5.0f) * 1024;
    current_pin_value = ((_current / 17.0f) / 5.0f) * 1024;
    // fake battery2 as just a 25% gain on the first one
    voltage2_pin_value = ((voltage * 0.25f / 10.1f) / 5.0f) * 1024;
    current2_pin_value = ((_current * 0.25f / 17.0f) / 5.0f) * 1024;
}

void SITL_State::init(int argc, char * const argv[])
{
    pwm_input[0] = pwm_input[1] = pwm_input[3] = 1500;
    pwm_input[4] = pwm_input[7] = 1800;
    pwm_input[2] = pwm_input[5] = pwm_input[6] = 1000;

    _scheduler = Scheduler::from(hal.scheduler);
    _parse_command_line(argc, argv);
}

/*
  set height above the ground in meters
 */
void SITL_State::set_height_agl(void)
{
    static float home_alt = -1;

    if (!_sitl) {
        // in example program
        return;
    }

    if (is_equal(home_alt, -1.0f) && _sitl->state.altitude > 0) {
        // remember home altitude as first non-zero altitude
        home_alt = _sitl->state.altitude;
    }

#if AP_TERRAIN_AVAILABLE
    if (_terrain != nullptr &&
        _sitl != nullptr &&
        _sitl->terrain_enable) {
        // get height above terrain from AP_Terrain. This assumes
        // AP_Terrain is working
        float terrain_height_amsl;
        struct Location location;
        location.lat = _sitl->state.latitude*1.0e7;
        location.lng = _sitl->state.longitude*1.0e7;

        if (_terrain->height_amsl(location, terrain_height_amsl, false)) {
            _sitl->height_agl = _sitl->state.altitude - terrain_height_amsl;
            return;
        }
    }
#endif

    if (_sitl != nullptr) {
        // fall back to flat earth model
        _sitl->height_agl = _sitl->state.altitude - home_alt;
    }
}

#endif