#include <AP_HAL/AP_HAL.h> #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include "AP_HAL_SITL.h" #include "AP_HAL_SITL_Namespace.h" #include "HAL_SITL_Class.h" #include "UARTDriver.h" #include "Scheduler.h" #include <stdio.h> #include <signal.h> #include <unistd.h> #include <stdlib.h> #include <errno.h> #include <sys/select.h> #include <AP_Param/AP_Param.h> #include <SITL/SIM_JSBSim.h> #include <AP_HAL/utility/Socket.h> extern const AP_HAL::HAL& hal; using namespace HALSITL; void SITL_State::_set_param_default(const char *parm) { char *pdup = strdup(parm); char *p = strchr(pdup, '='); if (p == nullptr) { printf("Please specify parameter as NAME=VALUE"); exit(1); } float value = strtof(p+1, nullptr); *p = 0; enum ap_var_type var_type; AP_Param *vp = AP_Param::find(pdup, &var_type); if (vp == nullptr) { printf("Unknown parameter %s\n", pdup); exit(1); } if (var_type == AP_PARAM_FLOAT) { ((AP_Float *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT32) { ((AP_Int32 *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT16) { ((AP_Int16 *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT8) { ((AP_Int8 *)vp)->set_and_save(value); } else { printf("Unable to set parameter %s\n", pdup); exit(1); } printf("Set parameter %s to %f\n", pdup, value); free(pdup); } /* setup for SITL handling */ void SITL_State::_sitl_setup(const char *home_str) { _home_str = home_str; #if !defined(__CYGWIN__) && !defined(__CYGWIN64__) _parent_pid = getppid(); #endif #ifndef HIL_MODE _setup_fdm(); #endif fprintf(stdout, "Starting SITL input\n"); // find the barometer object if it exists _sitl = AP::sitl(); _barometer = AP_Baro::get_singleton(); _ins = AP_InertialSensor::get_singleton(); _compass = Compass::get_singleton(); #if AP_TERRAIN_AVAILABLE _terrain = reinterpret_cast<AP_Terrain *>(AP_Param::find_object("TERRAIN_")); #endif if (_sitl != nullptr) { // setup some initial values #ifndef HIL_MODE _update_airspeed(0); _update_gps(0, 0, 0, 0, 0, 0, 0, false); _update_rangefinder(0); #endif if (enable_gimbal) { gimbal = new SITL::Gimbal(_sitl->state); } sitl_model->set_buzzer(&_sitl->buzzer_sim); sitl_model->set_sprayer(&_sitl->sprayer_sim); sitl_model->set_gripper_servo(&_sitl->gripper_sim); sitl_model->set_gripper_epm(&_sitl->gripper_epm_sim); sitl_model->set_parachute(&_sitl->parachute_sim); sitl_model->set_precland(&_sitl->precland_sim); if (_use_fg_view) { fg_socket.connect(_fg_address, _fg_view_port); } fprintf(stdout, "Using Irlock at port : %d\n", _irlock_port); _sitl->irlock_port = _irlock_port; } if (_synthetic_clock_mode) { // start with non-zero clock hal.scheduler->stop_clock(1); } } #ifndef HIL_MODE /* setup a SITL FDM listening UDP port */ void SITL_State::_setup_fdm(void) { if (!_sitl_rc_in.reuseaddress()) { fprintf(stderr, "SITL: socket reuseaddress failed on RC in port: %d - %s\n", _rcin_port, strerror(errno)); fprintf(stderr, "Aborting launch...\n"); exit(1); } if (!_sitl_rc_in.bind("0.0.0.0", _rcin_port)) { fprintf(stderr, "SITL: socket bind failed on RC in port : %d - %s\n", _rcin_port, strerror(errno)); fprintf(stderr, "Aborting launch...\n"); exit(1); } if (!_sitl_rc_in.set_blocking(false)) { fprintf(stderr, "SITL: socket set_blocking(false) failed on RC in port: %d - %s\n", _rcin_port, strerror(errno)); fprintf(stderr, "Aborting launch...\n"); exit(1); } if (!_sitl_rc_in.set_cloexec()) { fprintf(stderr, "SITL: socket set_cloexec() failed on RC in port: %d - %s\n", _rcin_port, strerror(errno)); fprintf(stderr, "Aborting launch...\n"); exit(1); } } #endif /* step the FDM by one time step */ void SITL_State::_fdm_input_step(void) { static uint32_t last_pwm_input = 0; _fdm_input_local(); /* make sure we die if our parent dies */ if (kill(_parent_pid, 0) != 0) { exit(1); } if (_scheduler->interrupts_are_blocked() || _sitl == nullptr) { return; } // simulate RC input at 50Hz if (AP_HAL::millis() - last_pwm_input >= 20 && _sitl->rc_fail != SITL::SITL::SITL_RCFail_NoPulses) { last_pwm_input = AP_HAL::millis(); new_rc_input = true; } _scheduler->sitl_begin_atomic(); if (_update_count == 0 && _sitl != nullptr) { _update_gps(0, 0, 0, 0, 0, 0, 0, false); _scheduler->timer_event(); _scheduler->sitl_end_atomic(); return; } if (_sitl != nullptr) { _update_gps(_sitl->state.latitude, _sitl->state.longitude, _sitl->state.altitude, _sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD, _sitl->state.yawDeg, !_sitl->gps_disable); _update_airspeed(_sitl->state.airspeed); _update_rangefinder(_sitl->state.range); if (_sitl->adsb_plane_count >= 0 && adsb == nullptr) { adsb = new SITL::ADSB(_sitl->state, _home_str); } else if (_sitl->adsb_plane_count == -1 && adsb != nullptr) { delete adsb; adsb = nullptr; } } // trigger all APM timers. _scheduler->timer_event(); _scheduler->sitl_end_atomic(); } void SITL_State::wait_clock(uint64_t wait_time_usec) { while (AP_HAL::micros64() < wait_time_usec) { if (hal.scheduler->in_main_thread() || Scheduler::from(hal.scheduler)->semaphore_wait_hack_required()) { _fdm_input_step(); } else { usleep(1000); } } } #define streq(a, b) (!strcmp(a, b)) int SITL_State::sim_fd(const char *name, const char *arg) { if (streq(name, "vicon")) { if (vicon != nullptr) { AP_HAL::panic("Only one vicon system at a time"); } vicon = new SITL::Vicon(); return vicon->fd(); } AP_HAL::panic("unknown simulated device: %s", name); } #ifndef HIL_MODE /* check for a SITL RC input packet */ void SITL_State::_check_rc_input(void) { uint32_t count = 0; while (_read_rc_sitl_input()) { count++; } if (count > 100) { ::fprintf(stderr, "Read %u rc inputs\n", count); } } bool SITL_State::_read_rc_sitl_input() { struct pwm_packet { uint16_t pwm[16]; } pwm_pkt; const ssize_t size = _sitl_rc_in.recv(&pwm_pkt, sizeof(pwm_pkt), 0); switch (size) { case -1: return false; case 8*2: case 16*2: { // a packet giving the receiver PWM inputs for (uint8_t i=0; i<size/2; i++) { // setup the pwm input for the RC channel inputs if (i < _sitl->state.rcin_chan_count) { // we're using rc from simulator continue; } uint16_t pwm = pwm_pkt.pwm[i]; if (pwm != 0) { if (_sitl->rc_fail == SITL::SITL::SITL_RCFail_Throttle950) { if (i == 2) { // set throttle (assumed to be on channel 3...) pwm = 950; } else { // centre all other inputs pwm = 1500; } } pwm_input[i] = pwm; } } return true; } default: fprintf(stderr, "Malformed SITL RC input (%li)", size); } return false; } /* output current state to flightgear */ void SITL_State::_output_to_flightgear(void) { SITL::FGNetFDM fdm {}; const SITL::sitl_fdm &sfdm = _sitl->state; fdm.version = 0x18; fdm.padding = 0; fdm.longitude = DEG_TO_RAD_DOUBLE*sfdm.longitude; fdm.latitude = DEG_TO_RAD_DOUBLE*sfdm.latitude; fdm.altitude = sfdm.altitude; fdm.agl = sfdm.altitude; fdm.phi = radians(sfdm.rollDeg); fdm.theta = radians(sfdm.pitchDeg); fdm.psi = radians(sfdm.yawDeg); if (_vehicle == ArduCopter) { fdm.num_engines = 4; for (uint8_t i=0; i<4; i++) { fdm.rpm[i] = constrain_float((pwm_output[i]-1000), 0, 1000); } } else { fdm.num_engines = 4; fdm.rpm[0] = constrain_float((pwm_output[2]-1000)*3, 0, 3000); // for quadplane fdm.rpm[1] = constrain_float((pwm_output[5]-1000)*12, 0, 12000); fdm.rpm[2] = constrain_float((pwm_output[6]-1000)*12, 0, 12000); fdm.rpm[3] = constrain_float((pwm_output[7]-1000)*12, 0, 12000); } fdm.ByteSwap(); fg_socket.send(&fdm, sizeof(fdm)); } /* get FDM input from a local model */ void SITL_State::_fdm_input_local(void) { struct sitl_input input; // check for direct RC input _check_rc_input(); // construct servos structure for FDM _simulator_servos(input); // update the model sitl_model->update_model(input); // get FDM output from the model if (_sitl) { sitl_model->fill_fdm(_sitl->state); _sitl->update_rate_hz = sitl_model->get_rate_hz(); if (_sitl->rc_fail == SITL::SITL::SITL_RCFail_None) { for (uint8_t i=0; i< _sitl->state.rcin_chan_count; i++) { pwm_input[i] = 1000 + _sitl->state.rcin[i]*1000; } } } if (gimbal != nullptr) { gimbal->update(); } if (adsb != nullptr) { adsb->update(); } if (vicon != nullptr) { Quaternion attitude; sitl_model->get_attitude(attitude); vicon->update(sitl_model->get_location(), sitl_model->get_position(), attitude); } if (_sitl && _use_fg_view) { _output_to_flightgear(); } // update simulation time if (_sitl) { hal.scheduler->stop_clock(_sitl->state.timestamp_us); } else { hal.scheduler->stop_clock(AP_HAL::micros64()+100); } set_height_agl(); _synthetic_clock_mode = true; _update_count++; } #endif /* create sitl_input structure for sending to FDM */ void SITL_State::_simulator_servos(struct sitl_input &input) { static uint32_t last_update_usec; /* this maps the registers used for PWM outputs. The RC * driver updates these whenever it wants the channel output * to change */ uint8_t i; if (last_update_usec == 0 || !output_ready) { for (i=0; i<SITL_NUM_CHANNELS; i++) { pwm_output[i] = 1000; } if (_vehicle == ArduPlane) { pwm_output[0] = pwm_output[1] = pwm_output[3] = 1500; } if (_vehicle == APMrover2) { pwm_output[0] = pwm_output[1] = pwm_output[2] = pwm_output[3] = 1500; } } // output at chosen framerate uint32_t now = AP_HAL::micros(); last_update_usec = now; float altitude = _barometer?_barometer->get_altitude():0; float wind_speed = 0; float wind_direction = 0; float wind_dir_z = 0; // give 5 seconds to calibrate airspeed sensor at 0 wind speed if (wind_start_delay_micros == 0) { wind_start_delay_micros = now; } else if (_sitl && (now - wind_start_delay_micros) > 5000000 ) { // The EKF does not like step inputs so this LPF keeps it happy. wind_speed = _sitl->wind_speed_active = (0.95f*_sitl->wind_speed_active) + (0.05f*_sitl->wind_speed); wind_direction = _sitl->wind_direction_active = (0.95f*_sitl->wind_direction_active) + (0.05f*_sitl->wind_direction); wind_dir_z = _sitl->wind_dir_z_active = (0.95f*_sitl->wind_dir_z_active) + (0.05f*_sitl->wind_dir_z); // pass wind into simulators using different wind types via param SIM_WIND_T*. switch (_sitl->wind_type) { case SITL::SITL::WIND_TYPE_SQRT: if (altitude < _sitl->wind_type_alt) { wind_speed *= sqrtf(MAX(altitude / _sitl->wind_type_alt, 0)); } break; case SITL::SITL::WIND_TYPE_COEF: wind_speed += (altitude - _sitl->wind_type_alt) * _sitl->wind_type_coef; break; case SITL::SITL::WIND_TYPE_NO_LIMIT: default: break; } // never allow negative wind velocity wind_speed = MAX(wind_speed, 0); } input.wind.speed = wind_speed; input.wind.direction = wind_direction; input.wind.turbulence = _sitl?_sitl->wind_turbulance:0; input.wind.dir_z = wind_dir_z; for (i=0; i<SITL_NUM_CHANNELS; i++) { if (pwm_output[i] == 0xFFFF) { input.servos[i] = 0; } else { input.servos[i] = pwm_output[i]; } } float engine_mul = _sitl?_sitl->engine_mul.get():1; uint8_t engine_fail = _sitl?_sitl->engine_fail.get():0; bool motors_on = false; if (engine_fail >= ARRAY_SIZE(input.servos)) { engine_fail = 0; } // apply engine multiplier to motor defined by the SIM_ENGINE_FAIL parameter if (_vehicle != APMrover2) { input.servos[engine_fail] = ((input.servos[engine_fail]-1000) * engine_mul) + 1000; } else { input.servos[engine_fail] = static_cast<uint16_t>(((input.servos[engine_fail] - 1500) * engine_mul) + 1500); } if (_vehicle == ArduPlane) { motors_on = ((input.servos[2] - 1000) / 1000.0f) > 0; } else if (_vehicle == APMrover2) { input.servos[2] = static_cast<uint16_t>(constrain_int16(input.servos[2], 1000, 2000)); input.servos[0] = static_cast<uint16_t>(constrain_int16(input.servos[0], 1000, 2000)); motors_on = !is_zero(((input.servos[2] - 1500) / 500.0f)); } else { motors_on = false; // run checks on each motor for (i=0; i<4; i++) { // check motors do not exceed their limits if (input.servos[i] > 2000) input.servos[i] = 2000; if (input.servos[i] < 1000) input.servos[i] = 1000; // update motor_on flag if ((input.servos[i]-1000)/1000.0f > 0) { motors_on = true; } } } if (_sitl) { _sitl->motors_on = motors_on; } float voltage = 0; _current = 0; if (_sitl != nullptr) { if (_sitl->state.battery_voltage <= 0) { if (_vehicle == ArduSub) { voltage = _sitl->batt_voltage; for (i = 0; i < 6; i++) { float pwm = input.servos[i]; //printf("i: %d, pwm: %.2f\n", i, pwm); float fraction = fabsf((pwm - 1500) / 500.0f); voltage -= fraction * 0.5f; float draw = fraction * 15; _current += draw; } } else { // simulate simple battery setup float throttle; if (_vehicle == APMrover2) { throttle = motors_on ? (input.servos[2] - 1500) / 500.0f : 0; } else { throttle = motors_on ? (input.servos[2] - 1000) / 1000.0f : 0; } // lose 0.7V at full throttle voltage = _sitl->batt_voltage - 0.7f*fabsf(throttle); // assume 50A at full throttle _current = 50.0f * fabsf(throttle); } } else { // FDM provides voltage and current voltage = _sitl->state.battery_voltage; _current = _sitl->state.battery_current; } } // assume 3DR power brick voltage_pin_value = ((voltage / 10.1f) / 5.0f) * 1024; current_pin_value = ((_current / 17.0f) / 5.0f) * 1024; // fake battery2 as just a 25% gain on the first one voltage2_pin_value = ((voltage * 0.25f / 10.1f) / 5.0f) * 1024; current2_pin_value = ((_current * 0.25f / 17.0f) / 5.0f) * 1024; } void SITL_State::init(int argc, char * const argv[]) { pwm_input[0] = pwm_input[1] = pwm_input[3] = 1500; pwm_input[4] = pwm_input[7] = 1800; pwm_input[2] = pwm_input[5] = pwm_input[6] = 1000; _scheduler = Scheduler::from(hal.scheduler); _parse_command_line(argc, argv); } /* set height above the ground in meters */ void SITL_State::set_height_agl(void) { static float home_alt = -1; if (!_sitl) { // in example program return; } if (is_equal(home_alt, -1.0f) && _sitl->state.altitude > 0) { // remember home altitude as first non-zero altitude home_alt = _sitl->state.altitude; } #if AP_TERRAIN_AVAILABLE if (_terrain != nullptr && _sitl != nullptr && _sitl->terrain_enable) { // get height above terrain from AP_Terrain. This assumes // AP_Terrain is working float terrain_height_amsl; struct Location location; location.lat = _sitl->state.latitude*1.0e7; location.lng = _sitl->state.longitude*1.0e7; if (_terrain->height_amsl(location, terrain_height_amsl, false)) { _sitl->height_agl = _sitl->state.altitude - terrain_height_amsl; return; } } #endif if (_sitl != nullptr) { // fall back to flat earth model _sitl->height_agl = _sitl->state.altitude - home_alt; } } #endif