/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include <FastSerial.h> #include <AP_InertialNav.h> #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include <wiring.h> #endif // table of user settable parameters const AP_Param::GroupInfo AP_InertialNav::var_info[] PROGMEM = { // index 0 and 1 are for old parameters that are no longer used // @Param: ACORR // @DisplayName: Inertial Nav calculated accelerometer corrections // @Description: calculated accelerometer corrections // @Increment: 1 AP_GROUPINFO("ACORR", 0, AP_InertialNav, _accel_correction, 0), // @Param: TC_XY // @DisplayName: Horizontal Time Constant // @Description: Time constnat for GPS and accel mixing. Higher TC increases GPS impact on position // @Range: 0 10 // @Increment: 0.1 AP_GROUPINFO("TC_XY", 1, AP_InertialNav, _time_constant_xy, AP_INTERTIALNAV_TC_XY), // @Param: TC_Z // @DisplayName: Vertical Time Constant // @Description: Time constnat for baro and accel mixing. Higher TC increases barometers impact on altitude // @Range: 0 10 // @Increment: 0.1 AP_GROUPINFO("TC_Z", 2, AP_InertialNav, _time_constant_z, AP_INTERTIALNAV_TC_Z), AP_GROUPEND }; // save_params - save all parameters to eeprom void AP_InertialNav::save_params() { Vector3f accel_corr = _comp_filter.get_1st_order_correction(); accel_corr.x = constrain(accel_corr.x,-200,200); accel_corr.y = constrain(accel_corr.y,-200,200); accel_corr.z = constrain(accel_corr.z,-200,200); _accel_correction.set_and_save(accel_corr); } // set time constant - set timeconstant used by complementary filter void AP_InertialNav::set_time_constant_xy( float time_constant_in_seconds ) { // ensure it's a reasonable value if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) { _time_constant_xy = time_constant_in_seconds; _comp_filter.update_gains(_time_constant_xy, _time_constant_z); } } // set time constant - set timeconstant used by complementary filter void AP_InertialNav::set_time_constant_z( float time_constant_in_seconds ) { // ensure it's a reasonable value if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) { _time_constant_z = time_constant_in_seconds; _comp_filter.update_gains(_time_constant_xy, _time_constant_z); } } // check_baro - check if new baro readings have arrived and use them to correct vertical accelerometer offsets void AP_InertialNav::check_baro() { uint32_t baro_update_time; if( _baro == NULL ) return; // calculate time since last baro reading baro_update_time = _baro->get_last_update(); if( baro_update_time != _baro_last_update ) { float dt = (float)(baro_update_time - _baro_last_update) / 1000.0; // call correction method correct_with_baro(_baro->get_altitude()*100, dt); _baro_last_update = baro_update_time; } } // correct_with_baro - modifies accelerometer offsets using barometer. dt is time since last baro reading void AP_InertialNav::correct_with_baro(float baro_alt, float dt) { static uint8_t first_reads = 0; // discard samples where dt is too large if( dt > 0.2 ) { return; } // discard first 10 reads but perform some initialisation if( first_reads <= 10 ) { _comp_filter.set_3rd_order_z(baro_alt); //_comp_filter.set_2nd_order_z(climb_rate); first_reads++; } // get dcm matrix Matrix3f dcm = _ahrs->get_dcm_matrix(); // provide baro alt to filter _comp_filter.correct_3rd_order_z(baro_alt, dcm, dt); } // set_current_position - all internal calculations are recorded as the distances from this point void AP_InertialNav::set_current_position(int32_t lon, int32_t lat) { // set base location _base_lon = lon; _base_lat = lat; // set longitude->meters scaling // this is used to offset the shrinking longitude as we go towards the poles _lon_to_m_scaling = cos((fabs((float)lat)/10000000.0) * 0.0174532925); // set estimated position to this position _comp_filter.set_3rd_order_xy(0,0); // set xy as enabled _xy_enabled = true; } // check_gps - check if new gps readings have arrived and use them to correct position estimates void AP_InertialNav::check_gps() { uint32_t gps_time; uint32_t now; if( _gps_ptr == NULL || *_gps_ptr == NULL ) return; // get time according to the gps gps_time = (*_gps_ptr)->time; // compare gps time to previous reading if( gps_time != _gps_last_time ) { // calculate time since last gps reading now = millis(); float dt = (float)(now - _gps_last_update) / 1000.0; // call position correction method correct_with_gps((*_gps_ptr)->longitude, (*_gps_ptr)->latitude, dt); // record gps time and system time of this update _gps_last_time = gps_time; _gps_last_update = now; } } // correct_with_gps - modifies accelerometer offsets using gps. dt is time since last gps update void AP_InertialNav::correct_with_gps(int32_t lon, int32_t lat, float dt) { float x,y; // discard samples where dt is too large if( dt > 1.0 || dt == 0 || !_xy_enabled) { return; } // calculate distance from home //x = (float)(lat - _base_lat) * 1.113195; //y = (float)(lon - _base_lon) * _lon_to_m_scaling * 1.113195; x = (float)(lat - _base_lat); y = (float)(lon - _base_lon) * _lon_to_m_scaling; // convert accelerometer readings to earth frame Matrix3f dcm = _ahrs->get_dcm_matrix(); // call comp filter's correct xy _comp_filter.correct_3rd_order_xy(-x, -y, dcm, dt); //Notes: with +x above, accel lat comes out reversed } // update - updates velocities and positions using latest info from ahrs, ins and barometer if new data is available; void AP_InertialNav::update(float dt) { // discard samples where dt is too large if( dt > 0.1 ) { return; } // check barometer check_baro(); // check gps check_gps(); // read acclerometer values _accel_bf = _ins->get_accel(); // convert accelerometer readings to earth frame Matrix3f dcm = _ahrs->get_dcm_matrix(); _accel_ef = dcm * _accel_bf; // remove influence of gravity _accel_ef.z += AP_INTERTIALNAV_GRAVITY; _accel_ef *= 100; // remove xy if not enabled if( !_xy_enabled ) { _accel_ef.x = 0; _accel_ef.y = 0; } // provide accelerometer values to filter _comp_filter.add_1st_order_sample(_accel_ef); // recalculate estimates _comp_filter.calculate(dt, dcm); // get position and velocity estimates _position = _comp_filter.get_3rd_order_estimate(); _velocity = _comp_filter.get_2nd_order_estimate(); } // position_ok - return true if position has been initialised and have received gps data within 3 seconds bool AP_InertialNav::position_ok() { return _xy_enabled && (millis() - _gps_last_update < 3000); } // get accel based latitude int32_t AP_InertialNav::get_latitude() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } //return _base_lat - (int32_t)(_position.x / 1.113195); return _base_lat - (int32_t)_position.x; } // get accel based longitude int32_t AP_InertialNav::get_longitude() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } //return _base_lon - (int32_t)(_position.y / (_lon_to_m_scaling * 1.113195) ); return _base_lon - (int32_t)(_position.y / _lon_to_m_scaling ); } // get accel based latitude float AP_InertialNav::get_latitude_diff() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } //return _base_lat + (int32_t)_position.x; //return -_position.x / 1.113195; return -_position.x; } // get accel based longitude float AP_InertialNav::get_longitude_diff() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } //return _base_lon - (int32_t)(_position.x / _lon_to_m_scaling); //return -_position.y / (_lon_to_m_scaling * 1.113195); return -_position.y / _lon_to_m_scaling; } // get velocity in latitude & longitude directions float AP_InertialNav::get_latitude_velocity() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } return -_velocity.x; // Note: is +_velocity.x the output velocity in logs is in reverse direction from accel lat } float AP_InertialNav::get_longitude_velocity() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } return -_velocity.y; }