// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************************************************** The init_ardupilot function processes everything we need for an in - air restart We will determine later if we are actually on the ground and process a ground start in that case. *****************************************************************************/ #if CLI_ENABLED == ENABLED // Functions called from the top-level menu static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp static int8_t reboot_board(uint8_t argc, const Menu::arg *argv); // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("Commands:\n" " logs log readback/setup mode\n" " setup setup mode\n" " test test mode\n" "\n" "Move the slide switch and reset to FLY.\n" "\n")); return(0); } // Command/function table for the top-level menu. static const struct Menu::command main_menu_commands[] PROGMEM = { // command function called // ======= =============== {"logs", process_logs}, {"setup", setup_mode}, {"test", test_mode}, {"reboot", reboot_board}, {"help", main_menu_help} }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); static int8_t reboot_board(uint8_t argc, const Menu::arg *argv) { hal.scheduler->reboot(false); return 0; } // the user wants the CLI. It never exits static void run_cli(AP_HAL::UARTDriver *port) { // disable the failsafe code in the CLI hal.scheduler->register_timer_failsafe(NULL,1); // disable the mavlink delay callback hal.scheduler->register_delay_callback(NULL, 5); cliSerial = port; Menu::set_port(port); port->set_blocking_writes(true); while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void init_ardupilot() { // Console serial port // // The console port buffers are defined to be sufficiently large to support // the console's use as a logging device, optionally as the GPS port when // GPS_PROTOCOL_IMU is selected, and as the telemetry port. // // XXX This could be optimised to reduce the buffer sizes in the cases // where they are not otherwise required. // hal.uartA->begin(SERIAL0_BAUD, 128, 128); // GPS serial port. // // XXX currently the EM406 (SiRF receiver) is nominally configured // at 57600, however it's not been supported to date. We should // probably standardise on 38400. // // XXX the 128 byte receive buffer may be too small for NMEA, depending // on the message set configured. // // standard gps running hal.uartB->begin(115200, 256, 16); cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING "\n\nFree RAM: %u\n"), memcheck_available_memory()); // // Check the EEPROM format version before loading any parameters from EEPROM. // load_parameters(); set_control_channels(); // after parameter load setup correct baud rate on uartA hal.uartA->begin(map_baudrate(g.serial0_baud, SERIAL0_BAUD)); // keep a record of how many resets have happened. This can be // used to detect in-flight resets g.num_resets.set_and_save(g.num_resets+1); // init the GCS gcs[0].init(hal.uartA); // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb, 5); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // we have a 2nd serial port for telemetry hal.uartC->begin(map_baudrate(g.serial1_baud, SERIAL1_BAUD), 128, 128); gcs[1].init(hal.uartC); #if MAVLINK_COMM_NUM_BUFFERS > 2 // we may have a 3rd serial port for telemetry if (hal.uartD != NULL) { hal.uartD->begin(map_baudrate(g.serial2_baud, SERIAL2_BAUD), 128, 128); gcs[2].init(hal.uartD); } #endif mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED DataFlash.Init(); // DataFlash log initialization if (!DataFlash.CardInserted()) { gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted")); g.log_bitmask.set(0); } else if (DataFlash.NeedErase()) { gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); do_erase_logs(); } if (g.log_bitmask != 0) { start_logging(); } #endif #if CONFIG_HAL_BOARD == HAL_BOARD_APM1 adc.Init(); // APM ADC library initialization #endif if (g.compass_enabled==true) { if (!compass.init()|| !compass.read()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); g.compass_enabled = false; } else { ahrs.set_compass(&compass); //compass.get_offsets(); // load offsets to account for airframe magnetic interference } } // initialise sonar init_sonar(); // Do GPS init g_gps = &g_gps_driver; // GPS initialisation g_gps->init(hal.uartB, GPS::GPS_ENGINE_AUTOMOTIVE); //mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id mavlink_system.type = MAV_TYPE_GROUND_ROVER; rc_override_active = hal.rcin->set_overrides(rc_override, 8); init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up the timer libs relay.init(); /* setup the 'main loop is dead' check. Note that this relies on the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check, 1000); // If the switch is in 'menu' mode, run the main menu. // // Since we can't be sure that the setup or test mode won't leave // the system in an odd state, we don't let the user exit the top // menu; they must reset in order to fly. // const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); cliSerial->println_P(msg); if (gcs[1].initialised) { hal.uartC->println_P(msg); } if (num_gcs > 2 && gcs[2].initialised) { hal.uartD->println_P(msg); } startup_ground(); if (g.log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_GROUNDSTART_MSG); set_mode((enum mode)g.initial_mode.get()); // set the correct flight mode // --------------------------- reset_control_switch(); } //******************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //******************************************************************************** static void startup_ground(void) { set_mode(INITIALISING); gcs_send_text_P(SEVERITY_LOW,PSTR(" GROUND START")); #if(GROUND_START_DELAY > 0) gcs_send_text_P(SEVERITY_LOW,PSTR(" With Delay")); delay(GROUND_START_DELAY * 1000); #endif //IMU ground start //------------------------ // startup_INS_ground(false); // read the radio to set trims // --------------------------- trim_radio(); // initialize commands // ------------------- init_commands(); hal.uartA->set_blocking_writes(false); hal.uartC->set_blocking_writes(false); gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to drive.")); } /* set the in_reverse flag reset the throttle integrator if this changes in_reverse */ static void set_reverse(bool reverse) { if (in_reverse == reverse) { return; } g.pidSpeedThrottle.reset_I(); in_reverse = reverse; } static void set_mode(enum mode mode) { if(control_mode == mode){ // don't switch modes if we are already in the correct mode. return; } control_mode = mode; throttle_last = 0; throttle = 500; set_reverse(false); g.pidSpeedThrottle.reset_I(); if (control_mode != AUTO) { auto_triggered = false; } switch(control_mode) { case MANUAL: case HOLD: case LEARNING: case STEERING: break; case AUTO: rtl_complete = false; restart_nav(); break; case RTL: do_RTL(); break; default: do_RTL(); break; } if (g.log_bitmask & MASK_LOG_MODE) Log_Write_Mode(); } /* called to set/unset a failsafe event. */ static void failsafe_trigger(uint8_t failsafe_type, bool on) { uint8_t old_bits = failsafe.bits; if (on) { failsafe.bits |= failsafe_type; } else { failsafe.bits &= ~failsafe_type; } if (old_bits == 0 && failsafe.bits != 0) { // a failsafe event has started failsafe.start_time = millis(); } if (failsafe.triggered != 0 && failsafe.bits == 0) { // a failsafe event has ended gcs_send_text_fmt(PSTR("Failsafe ended")); } failsafe.triggered &= failsafe.bits; if (failsafe.triggered == 0 && failsafe.bits != 0 && millis() - failsafe.start_time > g.fs_timeout*1000 && control_mode != RTL && control_mode != HOLD) { failsafe.triggered = failsafe.bits; gcs_send_text_fmt(PSTR("Failsafe trigger 0x%x"), (unsigned)failsafe.triggered); switch (g.fs_action) { case 0: break; case 1: set_mode(RTL); break; case 2: set_mode(HOLD); break; } } } static void startup_INS_ground(bool force_accel_level) { gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC...")); mavlink_delay(500); // Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!! // ----------------------- gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move vehicle")); mavlink_delay(1000); ahrs.init(); ahrs.set_fly_forward(true); AP_InertialSensor::Start_style style; if (g.skip_gyro_cal && !force_accel_level) { style = AP_InertialSensor::WARM_START; } else { style = AP_InertialSensor::COLD_START; } ins.init(style, ins_sample_rate); if (force_accel_level) { // when MANUAL_LEVEL is set to 1 we don't do accelerometer // levelling on each boot, and instead rely on the user to do // it once via the ground station ins.init_accel(); ahrs.set_trim(Vector3f(0, 0, 0)); } ahrs.reset(); } // updates the notify state // should be called at 50hz static void update_notify() { notify.update(); } static void resetPerfData(void) { mainLoop_count = 0; G_Dt_max = 0; ahrs.renorm_range_count = 0; ahrs.renorm_blowup_count = 0; gps_fix_count = 0; perf_mon_timer = millis(); } /* map from a 8 bit EEPROM baud rate to a real baud rate */ static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) { switch (rate) { case 1: return 1200; case 2: return 2400; case 4: return 4800; case 9: return 9600; case 19: return 19200; case 38: return 38400; case 57: return 57600; case 111: return 111100; case 115: return 115200; } cliSerial->println_P(PSTR("Invalid baudrate")); return default_baud; } static void check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 // the APM2 has a MUX setup where the first serial port switches // between USB and a TTL serial connection. When on USB we use // SERIAL0_BAUD, but when connected as a TTL serial port we run it // at SERIAL1_BAUD. if (usb_connected) { hal.uartA->begin(SERIAL0_BAUD); } else { hal.uartA->begin(map_baudrate(g.serial1_baud, SERIAL1_BAUD)); } #endif } /* * Read board voltage in millivolts */ uint16_t board_voltage(void) { return vcc_pin->voltage_latest() * 1000; } static void print_mode(AP_HAL::BetterStream *port, uint8_t mode) { switch (mode) { case MANUAL: port->print_P(PSTR("Manual")); break; case HOLD: port->print_P(PSTR("HOLD")); break; case LEARNING: port->print_P(PSTR("Learning")); break; case STEERING: port->print_P(PSTR("Stearing")); break; case AUTO: port->print_P(PSTR("AUTO")); break; case RTL: port->print_P(PSTR("RTL")); break; default: port->printf_P(PSTR("Mode(%u)"), (unsigned)mode); break; } } /* check a digitial pin for high,low (1/0) */ static uint8_t check_digital_pin(uint8_t pin) { int8_t dpin = hal.gpio->analogPinToDigitalPin(pin); if (dpin == -1) { return 0; } // ensure we are in input mode hal.gpio->pinMode(dpin, GPIO_INPUT); // enable pullup hal.gpio->write(dpin, 1); return hal.gpio->read(dpin); } /* write to a servo */ static void servo_write(uint8_t ch, uint16_t pwm) { #if HIL_MODE != HIL_MODE_DISABLED if (ch < 8) { RC_Channel::rc_channel(ch)->radio_out = pwm; } #else hal.rcout->enable_ch(ch); hal.rcout->write(ch, pwm); #endif }