#include "Plane.h" #if CLI_ENABLED == ENABLED // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Common for implementation details static const struct Menu::command test_menu_commands[] = { // Tests below here are for hardware sensors only present // when real sensors are attached or they are emulated {"gps", MENU_FUNC(test_gps)}, {"ins", MENU_FUNC(test_ins)}, {"airspeed", MENU_FUNC(test_airspeed)}, {"airpressure", MENU_FUNC(test_pressure)}, {"compass", MENU_FUNC(test_mag)}, {"logging", MENU_FUNC(test_logging)}, #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN {"shell", MENU_FUNC(test_shell)}, #endif }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); int8_t Plane::test_mode(uint8_t argc, const Menu::arg *argv) { cliSerial->printf("Test Mode\n\n"); test_menu.run(); return 0; } void Plane::print_hit_enter() { cliSerial->printf("Hit Enter to exit.\n\n"); } /* * test the dataflash is working */ int8_t Plane::test_logging(uint8_t argc, const Menu::arg *argv) { DataFlash.ShowDeviceInfo(cliSerial); return 0; } #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN /* * run a debug shell */ int8_t Plane::test_shell(uint8_t argc, const Menu::arg *argv) { hal.util->run_debug_shell(cliSerial); return 0; } #endif //------------------------------------------------------------------------------------------- // tests in this section are for real sensors or sensors that have been simulated int8_t Plane::test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); hal.scheduler->delay(1000); uint32_t last_message_time_ms = 0; while(1) { hal.scheduler->delay(100); gps.update(); if (gps.last_message_time_ms() != last_message_time_ms) { last_message_time_ms = gps.last_message_time_ms(); const Location &loc = gps.location(); cliSerial->printf("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n", (long)loc.lat, (long)loc.lng, (long)loc.alt/100, (int)gps.num_sats()); } else { cliSerial->printf("."); } if(cliSerial->available() > 0) { return (0); } } } int8_t Plane::test_ins(uint8_t argc, const Menu::arg *argv) { //cliSerial->printf("Calibrating."); ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_wind_estimation(true); ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); print_hit_enter(); hal.scheduler->delay(1000); uint8_t counter = 0; while(1) { hal.scheduler->delay(20); if (micros() - perf.fast_loopTimer_us > 19000UL) { perf.fast_loopTimer_us = micros(); // INS // --- ahrs.update(); if(g.compass_enabled) { counter++; if(counter == 5) { compass.read(); counter = 0; } } // We are using the INS // --------------------- Vector3f gyros = ins.get_gyro(); Vector3f accels = ins.get_accel(); cliSerial->printf("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n", (int)ahrs.roll_sensor / 100, (int)ahrs.pitch_sensor / 100, (uint16_t)ahrs.yaw_sensor / 100, (double)gyros.x, (double)gyros.y, (double)gyros.z, (double)accels.x, (double)accels.y, (double)accels.z); } if(cliSerial->available() > 0) { return (0); } } } int8_t Plane::test_mag(uint8_t argc, const Menu::arg *argv) { if (!g.compass_enabled) { cliSerial->printf("Compass: "); print_enabled(false); return (0); } if (!compass.init()) { cliSerial->printf("Compass initialisation failed!\n"); return 0; } ahrs.init(); ahrs.set_fly_forward(true); ahrs.set_wind_estimation(true); ahrs.set_compass(&compass); // we need the AHRS initialised for this test ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); uint16_t counter = 0; float heading = 0; print_hit_enter(); while(1) { hal.scheduler->delay(20); if (micros() - perf.fast_loopTimer_us > 19000UL) { perf.fast_loopTimer_us = micros(); // INS // --- ahrs.update(); if(counter % 5 == 0) { if (compass.read()) { // Calculate heading const Matrix3f &m = ahrs.get_rotation_body_to_ned(); heading = compass.calculate_heading(m); compass.learn_offsets(); } } counter++; if (counter>20) { if (compass.healthy()) { const Vector3f &mag_ofs = compass.get_offsets(); const Vector3f &mag = compass.get_field(); cliSerial->printf("Heading: %f, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n", (double)((wrap_360_cd(ToDeg(heading) * 100)) /100), (double)mag.x, (double)mag.y, (double)mag.z, (double)mag_ofs.x, (double)mag_ofs.y, (double)mag_ofs.z); } else { cliSerial->printf("compass not healthy\n"); } counter=0; } } if (cliSerial->available() > 0) { break; } } // save offsets. This allows you to get sane offset values using // the CLI before you go flying. cliSerial->printf("saving offsets\n"); compass.save_offsets(); return (0); } //------------------------------------------------------------------------------------------- // real sensors that have not been simulated yet go here int8_t Plane::test_airspeed(uint8_t argc, const Menu::arg *argv) { if (!airspeed.enabled()) { cliSerial->printf("airspeed: "); print_enabled(false); return (0); }else{ print_hit_enter(); zero_airspeed(false); cliSerial->printf("airspeed: "); print_enabled(true); while(1) { hal.scheduler->delay(20); read_airspeed(); cliSerial->printf("%.1f m/s\n", (double)airspeed.get_airspeed()); if(cliSerial->available() > 0) { return (0); } } } } int8_t Plane::test_pressure(uint8_t argc, const Menu::arg *argv) { cliSerial->printf("Uncalibrated relative airpressure\n"); print_hit_enter(); init_barometer(true); while(1) { hal.scheduler->delay(100); barometer.update(); if (!barometer.healthy()) { cliSerial->printf("not healthy\n"); } else { cliSerial->printf("Alt: %0.2fm, Raw: %f Temperature: %.1f\n", (double)barometer.get_altitude(), (double)barometer.get_pressure(), (double)barometer.get_temperature()); } if(cliSerial->available() > 0) { return (0); } } } void Plane::print_enabled(bool b) { if (b) { cliSerial->printf("en"); } else { cliSerial->printf("dis"); } cliSerial->printf("abled\n"); } #endif // CLI_ENABLED