#include "Rover.h" #define SAILBOAT_AUTO_TACKING_TIMEOUT_MS 50000 // tacks in auto mode timeout if not successfully completed within this many milliseconds #define SAILBOAT_TACKING_ACCURACY_DEG 10 // tack is considered complete when vehicle is within this many degrees of target tack angle /* To Do List - Improve tacking in light winds and bearing away in strong wings - consider drag vs lift sailing differences, ie upwind sail is like wing, dead down wind sail is like parachute - max speed paramiter and controller, for mapping you may not want to go too fast - mavlink sailing messages - motor sailing, some boats may also have motor, we need to decide at what point we would be better of just motoring in low wind, or for a tight loiter, or to hit waypoint exactly, or if stuck head to wind, or to reverse... - smart decision making, ie tack on windshifts, what to do if stuck head to wind - some sailing codes track waves to try and 'surf' and to allow tacking on a flat bit, not sure if there is much gain to be had here - add some sort of pitch monitoring to prevent nose diving in heavy weather - pitch PID for hydrofoils - more advanced sail control, ie twist - independent sheeting for main and jib - wing type sails with 'elevator' control - tack on depth sounder info to stop sailing into shallow water on indirect sailing routes - add option to do proper tacks, ie tacking on flat spot in the waves, or only try once at a certain speed, or some better method than just changing the desired heading suddenly */ const AP_Param::GroupInfo Sailboat::var_info[] = { // @Param: ENABLE // @DisplayName: Enable Sailboat // @Description: This enables Sailboat functionality // @Values: 0:Disable,1:Enable // @User: Standard // @RebootRequired: True AP_GROUPINFO_FLAGS("ENABLE", 1, Sailboat, enable, 0, AP_PARAM_FLAG_ENABLE), // @Param: ANGLE_MIN // @DisplayName: Sail min angle // @Description: Mainsheet tight, angle between centerline and boom // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("ANGLE_MIN", 2, Sailboat, sail_angle_min, 0), // @Param: ANGLE_MAX // @DisplayName: Sail max angle // @Description: Mainsheet loose, angle between centerline and boom // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("ANGLE_MAX", 3, Sailboat, sail_angle_max, 90), // @Param: ANGLE_IDEAL // @DisplayName: Sail ideal angle // @Description: Ideal angle between sail and apparent wind // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("ANGLE_IDEAL", 4, Sailboat, sail_angle_ideal, 25), // @Param: HEEL_MAX // @DisplayName: Sailing maximum heel angle // @Description: When in auto sail trim modes the heel will be limited to this value using PID control // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("HEEL_MAX", 5, Sailboat, sail_heel_angle_max, 15), // @Param: SAIL_NO_GO_ANGLE // @DisplayName: Sailing no go zone angle // @Description: The typical closest angle to the wind the vehicle will sail at. the vehicle will sail at this angle when going upwind // @Units: deg // @Range: 0 90 // @Increment: 1 // @User: Standard AP_GROUPINFO("NO_GO_ANGLE", 6, Sailboat, sail_no_go, 45), AP_GROUPEND }; /* constructor */ Sailboat::Sailboat() { AP_Param::setup_object_defaults(this, var_info); } void Sailboat::init() { // sailboat defaults if (enabled()) { rover.g2.crash_angle.set_default(0); rover.g2.loit_type.set_default(1); rover.g2.loit_radius.set_default(5); rover.g2.wp_nav.set_default_overshoot(10); } } // update mainsail's desired angle based on wind speed and direction and desired speed (in m/s) void Sailboat::update_mainsail(float desired_speed) { if (!enabled()) { return; } // relax sail if desired speed is zero if (!is_positive(desired_speed)) { rover.g2.motors.set_mainsail(100.0f); return; } // + is wind over starboard side, - is wind over port side, but as the sails are sheeted the same on each side it makes no difference so take abs float wind_dir_apparent = fabsf(rover.g2.windvane.get_apparent_wind_direction_rad()); wind_dir_apparent = degrees(wind_dir_apparent); // set the main sail to the ideal angle to the wind float mainsail_angle = wind_dir_apparent -sail_angle_ideal; // make sure between allowable range mainsail_angle = constrain_float(mainsail_angle,sail_angle_min, sail_angle_max); // linear interpolate mainsail value (0 to 100) from wind angle mainsail_angle float mainsail = linear_interpolate(0.0f, 100.0f, mainsail_angle,sail_angle_min,sail_angle_max); // use PID controller to sheet out const float pid_offset = rover.g2.attitude_control.get_sail_out_from_heel(radians(sail_heel_angle_max), rover.G_Dt) * 100.0f; mainsail = constrain_float((mainsail+pid_offset), 0.0f ,100.0f); rover.g2.motors.set_mainsail(mainsail); } // Velocity Made Good, this is the speed we are traveling towards the desired destination // only for logging at this stage // https://en.wikipedia.org/wiki/Velocity_made_good float Sailboat::get_VMG() const { // return 0 if not heading towards waypoint if (!rover.control_mode->is_autopilot_mode()) { return 0.0f; } float speed; if (!rover.g2.attitude_control.get_forward_speed(speed)) { return 0.0f; } return (speed * cosf(wrap_PI(radians(rover.g2.wp_nav.wp_bearing_cd() * 0.01f) - rover.ahrs.yaw))); } // handle user initiated tack while in acro mode void Sailboat::handle_tack_request_acro() { // set tacking heading target to the current angle relative to the true wind but on the new tack currently_tacking = true; tack_heading_rad = wrap_2PI(rover.ahrs.yaw + 2.0f * wrap_PI((rover.g2.windvane.get_absolute_wind_direction_rad() - rover.ahrs.yaw))); } // return target heading in radians when tacking (only used in acro) float Sailboat::get_tack_heading_rad() const { return tack_heading_rad; } // handle user initiated tack while in autonomous modes (Auto, Guided, RTL, SmartRTL, etc) void Sailboat::handle_tack_request_auto() { // record time of request for tack. This will be processed asynchronously by sailboat_calc_heading auto_tack_request_ms = AP_HAL::millis(); } // clear tacking state variables void Sailboat::clear_tack() { currently_tacking = false; auto_tack_request_ms = 0; } // returns true if boat is currently tacking bool Sailboat::tacking() const { return enabled() && currently_tacking; } // returns true if sailboat should take a indirect navigation route to go upwind // desired_heading should be in centi-degrees bool Sailboat::use_indirect_route(float desired_heading_cd) const { if (!enabled()) { return false; } // convert desired heading to radians const float desired_heading_rad = radians(desired_heading_cd * 0.01f); // check if desired heading is in the no go zone, if it is we can't go direct return fabsf(wrap_PI(rover.g2.windvane.get_absolute_wind_direction_rad() - desired_heading_rad)) <= radians(sail_no_go); } // if we can't sail on the desired heading then we should pick the best heading that we can sail on // this function assumes the caller has already checked sailboat_use_indirect_route(desired_heading_cd) returned true float Sailboat::calc_heading(float desired_heading_cd) { if (!enabled()) { return desired_heading_cd; } bool should_tack = false; // check for user requested tack uint32_t now = AP_HAL::millis(); if (auto_tack_request_ms != 0) { // set should_tack flag is user requested tack within last 0.5 sec should_tack = ((now - auto_tack_request_ms) < 500); auto_tack_request_ms = 0; } // calculate left and right no go headings looking upwind const float left_no_go_heading_rad = wrap_2PI(rover.g2.windvane.get_absolute_wind_direction_rad() + radians(sail_no_go)); const float right_no_go_heading_rad = wrap_2PI(rover.g2.windvane.get_absolute_wind_direction_rad() - radians(sail_no_go)); // calculate current tack, Port if heading is left of no-go, STBD if right of no-go Sailboat_Tack current_tack; if (is_negative(rover.g2.windvane.get_apparent_wind_direction_rad())) { current_tack = TACK_PORT; } else { current_tack = TACK_STARBOARD; } // trigger tack if cross track error larger than waypoint_overshoot parameter // this effectively defines a 'corridor' of width 2*waypoint_overshoot that the boat will stay within const float cross_track_error = rover.g2.wp_nav.crosstrack_error(); if ((fabsf(cross_track_error) >= rover.g2.wp_nav.get_overshoot()) && !is_zero(rover.g2.wp_nav.get_overshoot()) && !currently_tacking) { // make sure the new tack will reduce the cross track error // if were on starboard tack we are traveling towards the left hand boundary if (is_positive(cross_track_error) && (current_tack == TACK_STARBOARD)) { should_tack = true; } // if were on port tack we are traveling towards the right hand boundary if (is_negative(cross_track_error) && (current_tack == TACK_PORT)) { should_tack = true; } } // if tack triggered, calculate target heading if (should_tack) { gcs().send_text(MAV_SEVERITY_INFO, "Sailboat: Tacking"); // calculate target heading for the new tack switch (current_tack) { case TACK_PORT: tack_heading_rad = right_no_go_heading_rad; break; case TACK_STARBOARD: tack_heading_rad = left_no_go_heading_rad; break; } currently_tacking = true; auto_tack_start_ms = AP_HAL::millis(); } // if we are tacking we maintain the target heading until the tack completes or times out if (currently_tacking) { // check if we have reached target if (fabsf(wrap_PI(tack_heading_rad - rover.ahrs.yaw)) <= radians(SAILBOAT_TACKING_ACCURACY_DEG)) { clear_tack(); } else if ((now - auto_tack_start_ms) > SAILBOAT_AUTO_TACKING_TIMEOUT_MS) { // tack has taken too long gcs().send_text(MAV_SEVERITY_INFO, "Sailboat: Tacking timed out"); clear_tack(); } // return tack target heading return degrees(tack_heading_rad) * 100.0f; } // return closest possible heading to wind if (current_tack == TACK_PORT) { return degrees(left_no_go_heading_rad) * 100.0f; } else { return degrees(right_no_go_heading_rad) * 100.0f; } }