// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // // total up and check overflow // check size of group var_info /// @file AP_Param.cpp /// @brief The AP variable store. #include #include #include #include #include #include // for send_parameter_value_all #include #include extern const AP_HAL::HAL &hal; #define ENABLE_DEBUG 0 #if ENABLE_DEBUG # define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while(0) #else # define Debug(fmt, args ...) #endif // some useful progmem macros #define PGM_UINT8(addr) pgm_read_byte((const char *)addr) #define PGM_UINT16(addr) pgm_read_word((const uint16_t *)addr) #define PGM_FLOAT(addr) pgm_read_float((const float *)addr) #define PGM_POINTER(addr) pgm_read_pointer((const void *)addr) // the 'GROUP_ID' of a element of a group is the 18 bit identifier // used to distinguish between this element of the group and other // elements of the same group. It is calculated using a bit shift per // level of nesting, so the first level of nesting gets 6 bits the 2nd // level gets the next 6 bits, and the 3rd level gets the last 6 // bits. This limits groups to having at most 64 elements. #define GROUP_ID(grpinfo, base, i, shift) ((base)+(((uint16_t)PGM_UINT8(&grpinfo[i].idx))<<(shift))) // Note about AP_Vector3f handling. // The code has special cases for AP_Vector3f to allow it to be viewed // as both a single 3 element vector and as a set of 3 AP_Float // variables. This is done to make it possible for MAVLink to see // vectors as parameters, which allows users to save their compass // offsets in MAVLink parameter files. The code involves quite a few // special cases which could be generalised to any vector/matrix type // if we end up needing this behaviour for other than AP_Vector3f // static member variables for AP_Param. // // number of rows in the _var_info[] table uint8_t AP_Param::_num_vars; // storage and naming information about all types that can be saved const AP_Param::Info *AP_Param::_var_info; struct AP_Param::param_override *AP_Param::param_overrides = NULL; uint16_t AP_Param::num_param_overrides = 0; // storage object StorageAccess AP_Param::_storage(StorageManager::StorageParam); // write to EEPROM void AP_Param::eeprom_write_check(const void *ptr, uint16_t ofs, uint8_t size) { _storage.write_block(ofs, ptr, size); } // write a sentinal value at the given offset void AP_Param::write_sentinal(uint16_t ofs) { struct Param_header phdr; phdr.type = _sentinal_type; phdr.key = _sentinal_key; phdr.group_element = _sentinal_group; eeprom_write_check(&phdr, ofs, sizeof(phdr)); } // erase all EEPROM variables by re-writing the header and adding // a sentinal void AP_Param::erase_all(void) { struct EEPROM_header hdr; Debug("erase_all"); // write the header hdr.magic[0] = k_EEPROM_magic0; hdr.magic[1] = k_EEPROM_magic1; hdr.revision = k_EEPROM_revision; hdr.spare = 0; eeprom_write_check(&hdr, 0, sizeof(hdr)); // add a sentinal directly after the header write_sentinal(sizeof(struct EEPROM_header)); } // validate a group info table bool AP_Param::check_group_info(const struct AP_Param::GroupInfo * group_info, uint16_t * total_size, uint8_t group_shift, uint8_t prefix_length) { uint8_t type; int8_t max_idx = -1; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { #ifdef AP_NESTED_GROUPS_ENABLED if (type == AP_PARAM_GROUP) { // a nested group const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); if (group_shift + _group_level_shift >= _group_bits) { Debug("double group nesting in %s", group_info[i].name); return false; } if (ginfo == NULL || !check_group_info(ginfo, total_size, group_shift + _group_level_shift, prefix_length + strlen(group_info[i].name))) { return false; } continue; } #endif // AP_NESTED_GROUPS_ENABLED uint8_t idx = PGM_UINT8(&group_info[i].idx); if (idx >= (1<<_group_level_shift)) { Debug("idx too large (%u) in %s", idx, group_info[i].name); return false; } if ((int8_t)idx <= max_idx) { Debug("indexes must be in increasing order in %s", group_info[i].name); return false; } max_idx = (int8_t)idx; uint8_t size = type_size((enum ap_var_type)type); if (size == 0) { Debug("invalid type in %s", group_info[i].name); return false; } if (prefix_length + strlen(group_info[i].name) > 16) { Debug("suffix is too long in %s", group_info[i].name); return false; } (*total_size) += size + sizeof(struct Param_header); } return true; } // check for duplicate key values bool AP_Param::duplicate_key(uint8_t vindex, uint8_t key) { for (uint8_t i=vindex+1; i<_num_vars; i++) { uint8_t key2 = PGM_UINT8(&_var_info[i].key); if (key2 == key) { // no duplicate keys allowed return true; } } return false; } // validate the _var_info[] table bool AP_Param::check_var_info(void) { uint16_t total_size = sizeof(struct EEPROM_header); for (uint8_t i=0; i<_num_vars; i++) { uint8_t type = PGM_UINT8(&_var_info[i].type); uint8_t key = PGM_UINT8(&_var_info[i].key); if (type == AP_PARAM_GROUP) { if (i == 0) { // first element can't be a group, for first() call return false; } const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); if (group_info == NULL || !check_group_info(group_info, &total_size, 0, strlen(_var_info[i].name))) { return false; } } else { uint8_t size = type_size((enum ap_var_type)type); if (size == 0) { // not a valid type - the top level list can't contain // AP_PARAM_NONE return false; } total_size += size + sizeof(struct Param_header); } if (duplicate_key(i, key)) { return false; } } // we no longer check if total_size is larger than _eeprom_size, // as we allow for more variables than could fit, relying on not // saving default values return true; } // setup the _var_info[] table bool AP_Param::setup(void) { struct EEPROM_header hdr; Debug("setup %u vars", (unsigned)_num_vars); // check the header _storage.read_block(&hdr, 0, sizeof(hdr)); if (hdr.magic[0] != k_EEPROM_magic0 || hdr.magic[1] != k_EEPROM_magic1 || hdr.revision != k_EEPROM_revision) { // header doesn't match. We can't recover any variables. Wipe // the header and setup the sentinal directly after the header Debug("bad header in setup - erasing"); erase_all(); } return true; } // check if AP_Param has been initialised bool AP_Param::initialised(void) { return _var_info != NULL; } // find the info structure given a header and a group_info table // return the Info structure and a pointer to the variables storage const struct AP_Param::Info *AP_Param::find_by_header_group(struct Param_header phdr, void **ptr, uint8_t vindex, const struct GroupInfo *group_info, uint8_t group_base, uint8_t group_shift) { uint8_t type; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { #ifdef AP_NESTED_GROUPS_ENABLED if (type == AP_PARAM_GROUP) { // a nested group if (group_shift + _group_level_shift >= _group_bits) { // too deeply nested - this should have been caught by // setup() ! return NULL; } const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); const struct AP_Param::Info *ret = find_by_header_group(phdr, ptr, vindex, ginfo, GROUP_ID(group_info, group_base, i, group_shift), group_shift + _group_level_shift); if (ret != NULL) { return ret; } continue; } #endif // AP_NESTED_GROUPS_ENABLED if (GROUP_ID(group_info, group_base, i, group_shift) == phdr.group_element && type == phdr.type) { // found a group element *ptr = (void*)(PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset)); return &_var_info[vindex]; } } return NULL; } // find the info structure given a header // return the Info structure and a pointer to the variables storage const struct AP_Param::Info *AP_Param::find_by_header(struct Param_header phdr, void **ptr) { // loop over all named variables for (uint8_t i=0; i<_num_vars; i++) { uint8_t type = PGM_UINT8(&_var_info[i].type); uint8_t key = PGM_UINT8(&_var_info[i].key); if (key != phdr.key) { // not the right key continue; } if (type == AP_PARAM_GROUP) { const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); return find_by_header_group(phdr, ptr, i, group_info, 0, 0); } if (type == phdr.type) { // found it *ptr = (void*)PGM_POINTER(&_var_info[i].ptr); return &_var_info[i]; } } return NULL; } // find the info structure for a variable in a group const struct AP_Param::Info *AP_Param::find_var_info_group(const struct GroupInfo * group_info, uint8_t vindex, uint8_t group_base, uint8_t group_shift, uint32_t * group_element, const struct GroupInfo **group_ret, uint8_t * idx) const { uintptr_t base = PGM_POINTER(&_var_info[vindex].ptr); uint8_t type; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { uintptr_t ofs = PGM_POINTER(&group_info[i].offset); #ifdef AP_NESTED_GROUPS_ENABLED if (type == AP_PARAM_GROUP) { const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); // a nested group if (group_shift + _group_level_shift >= _group_bits) { // too deeply nested - this should have been caught by // setup() ! return NULL; } const struct AP_Param::Info *info; info = find_var_info_group(ginfo, vindex, GROUP_ID(group_info, group_base, i, group_shift), group_shift + _group_level_shift, group_element, group_ret, idx); if (info != NULL) { return info; } } else // Forgive the poor formatting - if continues below. #endif // AP_NESTED_GROUPS_ENABLED if ((uintptr_t) this == base + ofs) { *group_element = GROUP_ID(group_info, group_base, i, group_shift); *group_ret = &group_info[i]; *idx = 0; return &_var_info[vindex]; } else if (type == AP_PARAM_VECTOR3F && (base+ofs+sizeof(float) == (uintptr_t) this || base+ofs+2*sizeof(float) == (uintptr_t) this)) { // we are inside a Vector3f. We need to work out which // element of the vector the current object refers to. *idx = (((uintptr_t) this) - (base+ofs))/sizeof(float); *group_element = GROUP_ID(group_info, group_base, i, group_shift); *group_ret = &group_info[i]; return &_var_info[vindex]; } } return NULL; } // find the info structure for a variable const struct AP_Param::Info *AP_Param::find_var_info(uint32_t * group_element, const struct GroupInfo ** group_ret, uint8_t * idx) { for (uint8_t i=0; i<_num_vars; i++) { uint8_t type = PGM_UINT8(&_var_info[i].type); uintptr_t base = PGM_POINTER(&_var_info[i].ptr); if (type == AP_PARAM_GROUP) { const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); const struct AP_Param::Info *info; info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret, idx); if (info != NULL) { return info; } } else if (base == (uintptr_t) this) { *group_element = 0; *group_ret = NULL; *idx = 0; return &_var_info[i]; } else if (type == AP_PARAM_VECTOR3F && (base+sizeof(float) == (uintptr_t) this || base+2*sizeof(float) == (uintptr_t) this)) { // we are inside a Vector3f. Work out which element we are // referring to. *idx = (((uintptr_t) this) - base)/sizeof(float); *group_element = 0; *group_ret = NULL; return &_var_info[i]; } } return NULL; } // find the info structure for a variable const struct AP_Param::Info *AP_Param::find_var_info_token(const ParamToken &token, uint32_t * group_element, const struct GroupInfo ** group_ret, uint8_t * idx) const { uint8_t i = token.key; uint8_t type = PGM_UINT8(&_var_info[i].type); uintptr_t base = PGM_POINTER(&_var_info[i].ptr); if (type == AP_PARAM_GROUP) { const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); const struct AP_Param::Info *info; info = find_var_info_group(group_info, i, 0, 0, group_element, group_ret, idx); if (info != NULL) { return info; } } else if (base == (uintptr_t) this) { *group_element = 0; *group_ret = NULL; *idx = 0; return &_var_info[i]; } else if (type == AP_PARAM_VECTOR3F && (base+sizeof(float) == (uintptr_t) this || base+2*sizeof(float) == (uintptr_t) this)) { // we are inside a Vector3f. Work out which element we are // referring to. *idx = (((uintptr_t) this) - base)/sizeof(float); *group_element = 0; *group_ret = NULL; return &_var_info[i]; } return NULL; } // return the storage size for a AP_PARAM_* type uint8_t AP_Param::type_size(enum ap_var_type type) { switch (type) { case AP_PARAM_NONE: case AP_PARAM_GROUP: return 0; case AP_PARAM_INT8: return 1; case AP_PARAM_INT16: return 2; case AP_PARAM_INT32: return 4; case AP_PARAM_FLOAT: return 4; case AP_PARAM_VECTOR3F: return 3*4; case AP_PARAM_VECTOR6F: return 6*4; case AP_PARAM_MATRIX3F: return 3*3*4; } Debug("unknown type %u\n", type); return 0; } // scan the EEPROM looking for a given variable by header content // return true if found, along with the offset in the EEPROM where // the variable is stored // if not found return the offset of the sentinal // if the sentinal isn't found either, the offset is set to 0xFFFF bool AP_Param::scan(const AP_Param::Param_header *target, uint16_t *pofs) { struct Param_header phdr; uint16_t ofs = sizeof(AP_Param::EEPROM_header); while (ofs < _storage.size()) { _storage.read_block(&phdr, ofs, sizeof(phdr)); if (phdr.type == target->type && phdr.key == target->key && phdr.group_element == target->group_element) { // found it *pofs = ofs; return true; } // note that this is an ||, not an &&, as this makes us more // robust to power off while adding a variable to EEPROM if (phdr.type == _sentinal_type || phdr.key == _sentinal_key || phdr.group_element == _sentinal_group) { // we've reached the sentinal *pofs = ofs; return false; } ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); } *pofs = 0xffff; Debug("scan past end of eeprom"); return false; } /** * add a _X, _Y, _Z suffix to the name of a Vector3f element * @param buffer * @param buffer_size * @param idx Suffix: 0 --> _X; 1 --> _Y; 2 --> _Z; (other --> undefined) */ void AP_Param::add_vector3f_suffix(char *buffer, size_t buffer_size, uint8_t idx) const { const size_t len = strnlen(buffer, buffer_size); if (len + 2 <= buffer_size) { buffer[len] = '_'; buffer[len + 1] = static_cast('X' + idx); if (len + 3 <= buffer_size) { buffer[len + 2] = 0; } } } // Copy the variable's whole name to the supplied buffer. // // If the variable is a group member, prepend the group name. // void AP_Param::copy_name_token(const ParamToken &token, char *buffer, size_t buffer_size, bool force_scalar) const { uint32_t group_element; const struct GroupInfo *ginfo; uint8_t idx; const struct AP_Param::Info *info = find_var_info_token(token, &group_element, &ginfo, &idx); if (info == NULL) { *buffer = 0; Debug("no info found"); return; } strncpy(buffer, info->name, buffer_size); if (ginfo != NULL) { uint8_t len = strnlen(buffer, buffer_size); if (len < buffer_size) { strncpy(&buffer[len], ginfo->name, buffer_size-len); } if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&ginfo->type)) { // the caller wants a specific element in a Vector3f add_vector3f_suffix(buffer, buffer_size, idx); } } else if ((force_scalar || idx != 0) && AP_PARAM_VECTOR3F == PGM_UINT8(&info->type)) { add_vector3f_suffix(buffer, buffer_size, idx); } } // Find a variable by name in a group AP_Param * AP_Param::find_group(const char *name, uint8_t vindex, const struct GroupInfo *group_info, enum ap_var_type *ptype) { uint8_t type; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { #ifdef AP_NESTED_GROUPS_ENABLED if (type == AP_PARAM_GROUP) { const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); AP_Param *ap = find_group(name, vindex, ginfo, ptype); if (ap != NULL) { return ap; } } else #endif // AP_NESTED_GROUPS_ENABLED if (strcasecmp(name, group_info[i].name) == 0) { uintptr_t p = PGM_POINTER(&_var_info[vindex].ptr); *ptype = (enum ap_var_type)type; return (AP_Param *)(p + PGM_POINTER(&group_info[i].offset)); } else if (type == AP_PARAM_VECTOR3F) { // special case for finding Vector3f elements uint8_t suffix_len = strnlen(group_info[i].name, AP_MAX_NAME_SIZE); if (strncmp(name, group_info[i].name, suffix_len) == 0 && name[suffix_len] == '_' && (name[suffix_len+1] == 'X' || name[suffix_len+1] == 'Y' || name[suffix_len+1] == 'Z')) { uintptr_t p = PGM_POINTER(&_var_info[vindex].ptr); AP_Float *v = (AP_Float *)(p + PGM_POINTER(&group_info[i].offset)); *ptype = AP_PARAM_FLOAT; switch (name[suffix_len+1]) { case 'X': return (AP_Float *)&v[0]; case 'Y': return (AP_Float *)&v[1]; case 'Z': return (AP_Float *)&v[2]; } } } } return NULL; } // Find a variable by name. // AP_Param * AP_Param::find(const char *name, enum ap_var_type *ptype) { for (uint8_t i=0; i<_num_vars; i++) { uint8_t type = PGM_UINT8(&_var_info[i].type); if (type == AP_PARAM_GROUP) { uint8_t len = strnlen(_var_info[i].name, AP_MAX_NAME_SIZE); if (strncmp(name, _var_info[i].name, len) != 0) { continue; } const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); AP_Param *ap = find_group(name + len, i, group_info, ptype); if (ap != NULL) { return ap; } // we continue looking as we want to allow top level // parameter to have the same prefix name as group // parameters, for example CAM_P_G } else if (strcasecmp(name, _var_info[i].name) == 0) { *ptype = (enum ap_var_type)type; return (AP_Param *)PGM_POINTER(&_var_info[i].ptr); } } return NULL; } /* find the def_value for a variable by name */ const float * AP_Param::find_def_value_ptr(const char *name) { enum ap_var_type ptype; AP_Param *vp = find(name, &ptype); if (vp == NULL) { return NULL; } uint32_t group_element; const struct GroupInfo *ginfo; uint8_t gidx; const struct AP_Param::Info *info = vp->find_var_info(&group_element, &ginfo, &gidx); if (info == NULL) { return NULL; } if (ginfo != NULL) { return &ginfo->def_value; } return &info->def_value; } // Find a variable by index. Note that this is quite slow. // AP_Param * AP_Param::find_by_index(uint16_t idx, enum ap_var_type *ptype, ParamToken *token) { AP_Param *ap; uint16_t count=0; for (ap=AP_Param::first(token, ptype); ap && count < idx; ap=AP_Param::next_scalar(token, ptype)) { count++; } return ap; } // Find a object by name. // AP_Param * AP_Param::find_object(const char *name) { for (uint8_t i=0; i<_num_vars; i++) { if (strcasecmp(name, _var_info[i].name) == 0) { return (AP_Param *)PGM_POINTER(&_var_info[i].ptr); } } return NULL; } // Save the variable to EEPROM, if supported // bool AP_Param::save(bool force_save) { uint32_t group_element = 0; const struct GroupInfo *ginfo; uint8_t idx; const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx); const AP_Param *ap; if (info == NULL) { // we don't have any info on how to store it return false; } struct Param_header phdr; // create the header we will use to store the variable if (ginfo != NULL) { phdr.type = PGM_UINT8(&ginfo->type); } else { phdr.type = PGM_UINT8(&info->type); } phdr.key = PGM_UINT8(&info->key); phdr.group_element = group_element; ap = this; if (phdr.type != AP_PARAM_VECTOR3F && idx != 0) { // only vector3f can have non-zero idx for now return false; } if (idx != 0) { ap = (const AP_Param *)((uintptr_t)ap) - (idx*sizeof(float)); } char name[AP_MAX_NAME_SIZE+1]; copy_name_info(info, ginfo, idx, name, sizeof(name), true); // scan EEPROM to find the right location uint16_t ofs; if (scan(&phdr, &ofs)) { // found an existing copy of the variable eeprom_write_check(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); GCS_MAVLINK::send_parameter_value_all(name, (enum ap_var_type)info->type, cast_to_float((enum ap_var_type)phdr.type)); return true; } if (ofs == (uint16_t) ~0) { return false; } // if the value is the default value then don't save if (phdr.type <= AP_PARAM_FLOAT) { float v1 = cast_to_float((enum ap_var_type)phdr.type); float v2; if (ginfo != NULL) { v2 = get_default_value(&ginfo->def_value); } else { v2 = get_default_value(&info->def_value); } if (is_equal(v1,v2) && !force_save) { GCS_MAVLINK::send_parameter_value_all(name, (enum ap_var_type)info->type, v2); return true; } if (phdr.type != AP_PARAM_INT32 && (fabsf(v1-v2) < 0.0001f*fabsf(v1))) { // for other than 32 bit integers, we accept values within // 0.01 percent of the current value as being the same GCS_MAVLINK::send_parameter_value_all(name, (enum ap_var_type)info->type, v2); return true; } } if (ofs+type_size((enum ap_var_type)phdr.type)+2*sizeof(phdr) >= _storage.size()) { // we are out of room for saving variables hal.console->println("EEPROM full"); return false; } // write a new sentinal, then the data, then the header write_sentinal(ofs + sizeof(phdr) + type_size((enum ap_var_type)phdr.type)); eeprom_write_check(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); eeprom_write_check(&phdr, ofs, sizeof(phdr)); GCS_MAVLINK::send_parameter_value_all(name, (enum ap_var_type)info->type, cast_to_float((enum ap_var_type)phdr.type)); return true; } // Load the variable from EEPROM, if supported // bool AP_Param::load(void) { uint32_t group_element = 0; const struct GroupInfo *ginfo; uint8_t idx; const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx); if (info == NULL) { // we don't have any info on how to load it return false; } struct Param_header phdr; // create the header we will use to match the variable if (ginfo != NULL) { phdr.type = PGM_UINT8(&ginfo->type); } else { phdr.type = PGM_UINT8(&info->type); } phdr.key = PGM_UINT8(&info->key); phdr.group_element = group_element; // scan EEPROM to find the right location uint16_t ofs; if (!scan(&phdr, &ofs)) { // if the value isn't stored in EEPROM then set the default value if (ginfo != NULL) { uintptr_t base = PGM_POINTER(&info->ptr); set_value((enum ap_var_type)phdr.type, (void*)(base + PGM_UINT16(&ginfo->offset)), get_default_value(&ginfo->def_value)); } else { set_value((enum ap_var_type)phdr.type, (void*)PGM_POINTER(&info->ptr), get_default_value(&info->def_value)); } return false; } if (phdr.type != AP_PARAM_VECTOR3F && idx != 0) { // only vector3f can have non-zero idx for now return false; } AP_Param *ap; ap = this; if (idx != 0) { ap = (AP_Param *)((uintptr_t)ap) - (idx*sizeof(float)); } // found it _storage.read_block(ap, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); return true; } bool AP_Param::configured_in_storage(void) { uint32_t group_element = 0; const struct GroupInfo *ginfo; uint8_t idx; const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx); if (info == NULL) { // we don't have any info on how to load it return false; } struct Param_header phdr; // create the header we will use to match the variable if (ginfo != NULL) { phdr.type = PGM_UINT8(&ginfo->type); } else { phdr.type = PGM_UINT8(&info->type); } phdr.key = PGM_UINT8(&info->key); phdr.group_element = group_element; // scan EEPROM to find the right location uint16_t ofs; // only vector3f can have non-zero idx for now return scan(&phdr, &ofs) && (phdr.type == AP_PARAM_VECTOR3F || idx == 0); } bool AP_Param::configured_in_defaults_file(void) { uint32_t group_element = 0; const struct GroupInfo *ginfo; uint8_t idx; const struct AP_Param::Info *info = find_var_info(&group_element, &ginfo, &idx); if (info == NULL) { // we don't have any info on how to load it return false; } const float* def_value_ptr; if (ginfo != NULL) { def_value_ptr = &ginfo->def_value; } else { def_value_ptr = &info->def_value; } for (uint16_t i=0; iset(value); break; case AP_PARAM_INT16: ((AP_Int16 *)ptr)->set(value); break; case AP_PARAM_INT32: ((AP_Int32 *)ptr)->set(value); break; case AP_PARAM_FLOAT: ((AP_Float *)ptr)->set(value); break; default: break; } } // load default values for scalars in a group. This does not recurse // into other objects. This is a static function that should be called // in the objects constructor void AP_Param::setup_object_defaults(const void *object_pointer, const struct GroupInfo *group_info) { uintptr_t base = (uintptr_t)object_pointer; uint8_t type; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { if (type <= AP_PARAM_FLOAT) { void *ptr = (void *)(base + PGM_UINT16(&group_info[i].offset)); set_value((enum ap_var_type)type, ptr, get_default_value(&group_info[i].def_value)); } } } // set a value directly in an object. This should only be used by // example code, not by mainline vehicle code void AP_Param::set_object_value(const void *object_pointer, const struct GroupInfo *group_info, const char *name, float value) { uintptr_t base = (uintptr_t)object_pointer; uint8_t type; for (uint8_t i=0; (type=PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { if (strcmp(name, group_info[i].name) == 0 && type <= AP_PARAM_FLOAT) { void *ptr = (void *)(base + PGM_UINT16(&group_info[i].offset)); set_value((enum ap_var_type)type, ptr, value); } } } // load default values for all scalars in a sketch. This does not // recurse into sub-objects void AP_Param::setup_sketch_defaults(void) { setup(); for (uint8_t i=0; i<_num_vars; i++) { uint8_t type = PGM_UINT8(&_var_info[i].type); if (type <= AP_PARAM_FLOAT) { void *ptr = (void*)PGM_POINTER(&_var_info[i].ptr); set_value((enum ap_var_type)type, ptr, get_default_value(&_var_info[i].def_value)); } } } // Load all variables from EEPROM // bool AP_Param::load_all(void) { struct Param_header phdr; uint16_t ofs = sizeof(AP_Param::EEPROM_header); /* if the HAL specifies a defaults parameter file then override defaults using that file */ #ifdef HAL_PARAM_DEFAULTS_PATH load_defaults_file(HAL_PARAM_DEFAULTS_PATH); #endif while (ofs < _storage.size()) { _storage.read_block(&phdr, ofs, sizeof(phdr)); // note that this is an || not an && for robustness // against power off while adding a variable if (phdr.type == _sentinal_type || phdr.key == _sentinal_key || phdr.group_element == _sentinal_group) { // we've reached the sentinal return true; } const struct AP_Param::Info *info; void *ptr; info = find_by_header(phdr, &ptr); if (info != NULL) { _storage.read_block(ptr, ofs+sizeof(phdr), type_size((enum ap_var_type)phdr.type)); } ofs += type_size((enum ap_var_type)phdr.type) + sizeof(phdr); } // we didn't find the sentinal Debug("no sentinal in load_all"); return false; } // return the first variable in _var_info AP_Param *AP_Param::first(ParamToken *token, enum ap_var_type *ptype) { token->key = 0; token->group_element = 0; token->idx = 0; if (_num_vars == 0) { return NULL; } if (ptype != NULL) { *ptype = (enum ap_var_type)PGM_UINT8(&_var_info[0].type); } return (AP_Param *)(PGM_POINTER(&_var_info[0].ptr)); } /// Returns the next variable in a group, recursing into groups /// as needed AP_Param *AP_Param::next_group(uint8_t vindex, const struct GroupInfo *group_info, bool *found_current, uint8_t group_base, uint8_t group_shift, ParamToken *token, enum ap_var_type *ptype) { enum ap_var_type type; for (uint8_t i=0; (type=(enum ap_var_type)PGM_UINT8(&group_info[i].type)) != AP_PARAM_NONE; i++) { #ifdef AP_NESTED_GROUPS_ENABLED if (type == AP_PARAM_GROUP) { // a nested group const struct GroupInfo *ginfo = (const struct GroupInfo *)PGM_POINTER(&group_info[i].group_info); AP_Param *ap; ap = next_group(vindex, ginfo, found_current, GROUP_ID(group_info, group_base, i, group_shift), group_shift + _group_level_shift, token, ptype); if (ap != NULL) { return ap; } } else #endif // AP_NESTED_GROUPS_ENABLED { if (*found_current) { // got a new one token->key = vindex; token->group_element = GROUP_ID(group_info, group_base, i, group_shift); token->idx = 0; if (ptype != NULL) { *ptype = type; } return (AP_Param*)(PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset)); } if (GROUP_ID(group_info, group_base, i, group_shift) == token->group_element) { *found_current = true; if (type == AP_PARAM_VECTOR3F && token->idx < 3) { // return the next element of the vector as a // float token->idx++; if (ptype != NULL) { *ptype = AP_PARAM_FLOAT; } uintptr_t ofs = (uintptr_t)PGM_POINTER(&_var_info[vindex].ptr) + PGM_UINT16(&group_info[i].offset); ofs += sizeof(float)*(token->idx - 1u); return (AP_Param *)ofs; } } } } return NULL; } /// Returns the next variable in _var_info, recursing into groups /// as needed AP_Param *AP_Param::next(ParamToken *token, enum ap_var_type *ptype) { uint8_t i = token->key; bool found_current = false; if (i >= _num_vars) { // illegal token return NULL; } enum ap_var_type type = (enum ap_var_type)PGM_UINT8(&_var_info[i].type); // allow Vector3f to be seen as 3 variables. First as a vector, // then as 3 separate floats if (type == AP_PARAM_VECTOR3F && token->idx < 3) { token->idx++; if (ptype != NULL) { *ptype = AP_PARAM_FLOAT; } return (AP_Param *)(((token->idx - 1u)*sizeof(float))+(uintptr_t)PGM_POINTER(&_var_info[i].ptr)); } if (type != AP_PARAM_GROUP) { i++; found_current = true; } for (; i<_num_vars; i++) { type = (enum ap_var_type)PGM_UINT8(&_var_info[i].type); if (type == AP_PARAM_GROUP) { const struct GroupInfo *group_info = (const struct GroupInfo *)PGM_POINTER(&_var_info[i].group_info); AP_Param *ap = next_group(i, group_info, &found_current, 0, 0, token, ptype); if (ap != NULL) { return ap; } } else { // found the next one token->key = i; token->group_element = 0; token->idx = 0; if (ptype != NULL) { *ptype = type; } return (AP_Param *)(PGM_POINTER(&_var_info[i].ptr)); } } return NULL; } /// Returns the next scalar in _var_info, recursing into groups /// as needed AP_Param *AP_Param::next_scalar(ParamToken *token, enum ap_var_type *ptype) { AP_Param *ap; enum ap_var_type type; while ((ap = next(token, &type)) != NULL && type > AP_PARAM_FLOAT) ; if (ap != NULL && ptype != NULL) { *ptype = type; } return ap; } /// cast a variable to a float given its type float AP_Param::cast_to_float(enum ap_var_type type) const { switch (type) { case AP_PARAM_INT8: return ((AP_Int8 *)this)->cast_to_float(); case AP_PARAM_INT16: return ((AP_Int16 *)this)->cast_to_float(); case AP_PARAM_INT32: return ((AP_Int32 *)this)->cast_to_float(); case AP_PARAM_FLOAT: return ((AP_Float *)this)->cast_to_float(); default: return NAN; } } // print the value of all variables void AP_Param::show(const AP_Param *ap, const char *s, enum ap_var_type type, AP_HAL::BetterStream *port) { switch (type) { case AP_PARAM_INT8: port->printf("%s: %d\n", s, (int)((AP_Int8 *)ap)->get()); break; case AP_PARAM_INT16: port->printf("%s: %d\n", s, (int)((AP_Int16 *)ap)->get()); break; case AP_PARAM_INT32: port->printf("%s: %ld\n", s, (long)((AP_Int32 *)ap)->get()); break; case AP_PARAM_FLOAT: port->printf("%s: %f\n", s, (double)((AP_Float *)ap)->get()); break; default: break; } } // print the value of all variables void AP_Param::show(const AP_Param *ap, const ParamToken &token, enum ap_var_type type, AP_HAL::BetterStream *port) { char s[AP_MAX_NAME_SIZE+1]; ap->copy_name_token(token, s, sizeof(s), true); s[AP_MAX_NAME_SIZE] = 0; show(ap, s, type, port); } // print the value of all variables void AP_Param::show_all(AP_HAL::BetterStream *port, bool showKeyValues) { ParamToken token; AP_Param *ap; enum ap_var_type type; for (ap=AP_Param::first(&token, &type); ap; ap=AP_Param::next_scalar(&token, &type)) { if (showKeyValues) { port->printf("Key %i: Index %i: GroupElement %i : ", token.key, token.idx, token.group_element); } show(ap, token, type, port); } } #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wformat" // convert one old vehicle parameter to new object parameter void AP_Param::convert_old_parameter(const struct ConversionInfo *info) { // find the old value in EEPROM. uint16_t pofs; AP_Param::Param_header header; header.type = PGM_UINT8(&info->type); header.key = PGM_UINT8(&info->old_key); header.group_element = PGM_UINT8(&info->old_group_element); if (!scan(&header, &pofs)) { // the old parameter isn't saved in the EEPROM. It was // probably still set to the default value, which isn't stored // no need to convert return; } // load the old value from EEPROM uint8_t old_value[type_size((enum ap_var_type)header.type)]; _storage.read_block(old_value, pofs+sizeof(header), sizeof(old_value)); const AP_Param *ap = (const AP_Param *)&old_value[0]; // find the new variable in the variable structures enum ap_var_type ptype; AP_Param *ap2; ap2 = find(&info->new_name[0], &ptype); if (ap2 == NULL) { hal.console->printf("Unknown conversion '%s'\n", info->new_name); return; } // see if we can load it from EEPROM if (ap2->load()) { // the new parameter already has a value set by the user, or // has already been converted return; } // see if they are the same type if (ptype == (ap_var_type)header.type) { // copy the value over only if the new parameter does not already // have the old value (via a default). if (memcmp(ap2, ap, sizeof(old_value)) != 0) { memcpy(ap2, ap, sizeof(old_value)); // and save ap2->save(); } } else if (ptype <= AP_PARAM_FLOAT && header.type <= AP_PARAM_FLOAT) { // perform scalar->scalar conversion float v = ap->cast_to_float((enum ap_var_type)header.type); if (!is_equal(v,ap2->cast_to_float(ptype))) { // the value needs to change set_value(ptype, ap2, v); ap2->save(); } } else { // can't do vector<->scalar conversion, or different vector types hal.console->printf("Bad conversion type '%s'\n", info->new_name); } } #pragma GCC diagnostic pop // convert old vehicle parameters to new object parametersv void AP_Param::convert_old_parameters(const struct ConversionInfo *conversion_table, uint8_t table_size) { for (uint8_t i=0; iset(value); } else if (var_type == AP_PARAM_INT32) { if (value < 0) rounding_addition = -rounding_addition; float v = value+rounding_addition; v = constrain_float(v, -2147483648.0, 2147483647.0); ((AP_Int32 *)this)->set(v); } else if (var_type == AP_PARAM_INT16) { if (value < 0) rounding_addition = -rounding_addition; float v = value+rounding_addition; v = constrain_float(v, -32768, 32767); ((AP_Int16 *)this)->set(v); } else if (var_type == AP_PARAM_INT8) { if (value < 0) rounding_addition = -rounding_addition; float v = value+rounding_addition; v = constrain_float(v, -128, 127); ((AP_Int8 *)this)->set(v); } } #if HAL_OS_POSIX_IO == 1 #include /* parse a parameter file line */ bool AP_Param::parse_param_line(char *line, char **vname, float &value) { if (line[0] == '#') { return false; } char *saveptr = NULL; char *pname = strtok_r(line, ", =\t", &saveptr); if (pname == NULL) { return false; } if (strlen(pname) > AP_MAX_NAME_SIZE) { return false; } const char *value_s = strtok_r(NULL, ", =\t", &saveptr); if (value_s == NULL) { return false; } value = atof(value_s); *vname = pname; return true; } /* load a default set of parameters from a file */ bool AP_Param::load_defaults_file(const char *filename) { FILE *f = fopen(filename, "r"); if (f == NULL) { return false; } char line[100]; /* work out how many parameter default structures to allocate */ uint16_t num_defaults = 0; while (fgets(line, sizeof(line)-1, f)) { char *pname; float value; if (!parse_param_line(line, &pname, value)) { continue; } if (!find_def_value_ptr(pname)) { fclose(f); return false; } num_defaults++; } fclose(f); if (param_overrides != NULL) { free(param_overrides); } num_param_overrides = 0; param_overrides = new param_override[num_defaults]; if (param_overrides == NULL) { return false; } /* re-open to avoid possible seek issues with NuttX */ f = fopen(filename, "r"); if (f == NULL) { return false; } uint16_t idx = 0; while (fgets(line, sizeof(line)-1, f)) { char *pname; float value; if (!parse_param_line(line, &pname, value)) { continue; } const float *def_value_ptr = find_def_value_ptr(pname); if (!def_value_ptr) { fclose(f); return false; } param_overrides[idx].def_value_ptr = def_value_ptr; param_overrides[idx].value = value; idx++; enum ap_var_type var_type; AP_Param *vp = AP_Param::find(pname, &var_type); if (!vp) { fclose(f); return false; } vp->set_float(value, var_type); } fclose(f); num_param_overrides = num_defaults; return true; } #endif // HAL_OS_POSIX_IO /* find a default value given a pointer to a default value in flash */ float AP_Param::get_default_value(const float *def_value_ptr) { for (uint16_t i=0; i