/*
	AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega
	Code by Jordi Muñoz and Jose Julio. DIYDrones.com

	Modified by John Ihlein 6/19/2010 to:
	1)Prevent overflow of adc_counter when more than 8 samples collected between reads.  Probably
	  only an issue on initial read of ADC at program start.
	2)Reorder analog read order as follows:
	  p, q, r, ax, ay, az

	This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

	External ADC ADS7844 is connected via Serial port 2 (in SPI mode)
	TXD2 = MOSI = pin PH1
	RXD2 = MISO = pin PH0
	XCK2 = SCK = pin PH2
	Chip Select pin is PC4 (33)   [PH6 (9)]
	We are using the 16 clocks per conversion timming to increase efficiency (fast)
	The sampling frequency is 400Hz (Timer2 overflow interrupt)
	So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so
	we have an 4x oversampling and averaging.

	Methods:
		Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt)
		Ch(ch_num) : Return the ADC channel value

	// HJI - Input definitions.  USB connector assumed to be on the left, Rx and servo
	// connector pins to the rear.  IMU shield components facing up.  These are board
	// referenced sensor inputs, not device referenced.
	On Ardupilot Mega Hardware, oriented as described above:
	Chennel 0 : yaw rate, r
	Channel 1 : roll rate, p
	Channel 2 : pitch rate, q
	Channel 3 : x/y gyro temperature
	Channel 4 : x acceleration, aX
	Channel 5 : y acceleration, aY
	Channel 6 : z acceleration, aZ
	Channel 7 : Differential pressure sensor port

*/
extern "C" {
  // AVR LibC Includes
  #include <inttypes.h>
  #include <avr/interrupt.h>
  #include "WConstants.h"
}

#include "AP_ADC_ADS7844.h"


// Commands for reading ADC channels on ADS7844
static const unsigned char adc_cmd[9]=  { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 };
static volatile long          adc_value[8]   = { 0, 0, 0, 0, 0, 0, 0, 0 };
static volatile unsigned char adc_counter[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };

static unsigned char ADC_SPI_transfer(unsigned char data)
{
	/* Wait for empty transmit buffer */
	while ( !( UCSR2A & (1<<UDRE2)) );
	/* Put data into buffer, sends the data */
	UDR2 = data;
	/* Wait for data to be received */
	while ( !(UCSR2A & (1<<RXC2)) );
	/* Get and return received data from buffer */
	return UDR2;
}


ISR (TIMER2_OVF_vect)
{
  uint8_t ch;
  unsigned int adc_tmp;

  //bit_set(PORTL,6);                                 // To test performance
  bit_clear(PORTC,4);                                 // Enable Chip Select (PIN PC4)
  ADC_SPI_transfer(adc_cmd[0]);                       // Command to read the first channel
  for (ch=0;ch<8;ch++)
      {
      if (adc_counter[ch] >= 16)                       // To prevent overflow of adc_value
      {                                                //       
	    adc_value[ch] /= 2;
	    adc_counter[ch] /= 2;
	  }
	  adc_tmp = ADC_SPI_transfer(0)<<8;               // Read first byte
      adc_tmp |= ADC_SPI_transfer(adc_cmd[ch+1]);     // Read second byte and send next command
      adc_value[ch] += adc_tmp>>3;                    // Shift to 12 bits
      adc_counter[ch]++;                              // Number of samples
      }
  bit_set(PORTC,4);                                   // Disable Chip Select (PIN PC4)
  //bit_clear(PORTL,6);                               // To test performance
  TCNT2 = 104;                                        // 400 Hz
}


// Constructors ////////////////////////////////////////////////////////////////
AP_ADC_ADS7844::AP_ADC_ADS7844()
{
}

// Public Methods //////////////////////////////////////////////////////////////
void AP_ADC_ADS7844::Init(void)
{
  unsigned char tmp;

  pinMode(ADC_CHIP_SELECT,OUTPUT);

  digitalWrite(ADC_CHIP_SELECT,HIGH);                 // Disable device (Chip select is active low)

  // Setup Serial Port2 in SPI mode
  UBRR2 = 0;
  DDRH |= (1<<PH2);                                   // SPI clock XCK2 (PH2) as output. This enable SPI Master mode
  // Set MSPI mode of operation and SPI data mode 0.
  UCSR2C = (1<<UMSEL21)|(1<<UMSEL20);                 //|(0<<UCPHA2)|(0<<UCPOL2);
  // Enable receiver and transmitter.
  UCSR2B = (1<<RXEN2)|(1<<TXEN2);
  // Set Baud rate
  UBRR2 = 2;                                          // SPI clock running at 2.6MHz


  // Enable Timer2 Overflow interrupt to capture ADC data
  TIMSK2 = 0;                                         // Disable interrupts
  TCCR2A = 0;                                         // normal counting mode
  TCCR2B = _BV(CS21)|_BV(CS22);                       // Set prescaler of 256
  TCNT2  = 0;
  TIFR2  = _BV(TOV2);                                 // clear pending interrupts;
  TIMSK2 = _BV(TOIE2) ;                               // enable the overflow interrupt
}

// Read one channel value
int AP_ADC_ADS7844::Ch(unsigned char ch_num)         
{
  int result;         

  while(adc_counter[ch_num] < 2) { }				// Wait for at least 2 samples in accumlator

  cli();             
  if (adc_counter[ch_num]>0)
	result = adc_value[ch_num]/adc_counter[ch_num];
  else
	result = 0;
	
  adc_value[ch_num] = 0;                              // Initialize for next reading
  adc_counter[ch_num] = 0;
  sei();
  return(result);
}