#include "Util.h" #include <sys/time.h> #include <AP_Param/AP_Param.h> #include "RCOutput.h" #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <AP_Common/ExpandingString.h> extern const AP_HAL::HAL& hal; #ifdef WITH_SITL_TONEALARM HALSITL::ToneAlarm_SF HALSITL::Util::_toneAlarm; #endif uint64_t HALSITL::Util::get_hw_rtc() const { #ifndef CLOCK_REALTIME struct timeval ts; gettimeofday(&ts, nullptr); return ((long long)((ts.tv_sec * 1000000) + ts.tv_usec)); #else struct timespec ts; clock_gettime(CLOCK_REALTIME, &ts); const uint64_t seconds = ts.tv_sec; const uint64_t nanoseconds = ts.tv_nsec; return (seconds * 1000000ULL + nanoseconds/1000ULL); #endif } /* get a (hopefully unique) machine ID */ bool HALSITL::Util::get_system_id_unformatted(uint8_t buf[], uint8_t &len) { char *cbuf = (char *)buf; // try first to use machine-id file. Most systems will have this const char *paths[] = { "/etc/machine-id", "/var/lib/dbus/machine-id" }; for (uint8_t i=0; i<ARRAY_SIZE(paths); i++) { int fd = open(paths[i], O_RDONLY); if (fd == -1) { continue; } ssize_t ret = read(fd, buf, len); close(fd); if (ret <= 0) { continue; } if (ret == len) { cbuf[len-1] = '\0'; } else { cbuf[ret] = '\0'; } len = ret; char *p = strchr(cbuf, '\n'); if (p) { *p = 0; } len = strnlen(cbuf, len); buf[0] += sitlState->get_instance(); return true; } // fallback to hostname if (gethostname(cbuf, len) != 0) { // use a default name so this always succeeds. Without it we can't // implement some features (such as UAVCAN) snprintf(cbuf, len, "sitl-unknown-%d", sitlState->get_instance()); } else { // To ensure separate ids for each instance cbuf[0] += sitlState->get_instance(); } len = strnlen(cbuf, len); return true; } /* as get_system_id_unformatted will already be ascii, we use the same ID here */ bool HALSITL::Util::get_system_id(char buf[50]) { uint8_t len = 40; return get_system_id_unformatted((uint8_t *)buf, len); } #if ENABLE_HEAP void *HALSITL::Util::allocate_heap_memory(size_t size) { struct heap *new_heap = (struct heap*)malloc(sizeof(struct heap)); if (new_heap != nullptr) { new_heap->scripting_max_heap_size = size; new_heap->current_heap_usage = 0; } return (void *)new_heap; } void *HALSITL::Util::heap_realloc(void *heap_ptr, void *ptr, size_t old_size, size_t new_size) { if (heap_ptr == nullptr) { return nullptr; } struct heap *heapp = (struct heap*)heap_ptr; // extract appropriate headers size_t old_size_header = 0; heap_allocation_header *old_header = nullptr; if (ptr != nullptr) { old_header = ((heap_allocation_header *)ptr) - 1; old_size_header = old_header->allocation_size; #if !defined(HAL_BUILD_AP_PERIPH) if (old_size_header != old_size && new_size != 0) { INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result); } #endif } if ((heapp->current_heap_usage + new_size - old_size) > heapp->scripting_max_heap_size) { // fail the allocation as we don't have the memory. Note that we don't simulate fragmentation return nullptr; } heapp->current_heap_usage -= old_size_header; if (new_size == 0) { free(old_header); return nullptr; } heap_allocation_header *new_header = (heap_allocation_header *)malloc(new_size + sizeof(heap_allocation_header)); if (new_header == nullptr) { // total failure to allocate, this is very surprising in SITL return nullptr; } heapp->current_heap_usage += new_size; new_header->allocation_size = new_size; void *new_mem = new_header + 1; if (ptr == nullptr) { return new_mem; } memcpy(new_mem, ptr, old_size > new_size ? new_size : old_size); free(old_header); return new_mem; } #endif // ENABLE_HEAP #if !defined(HAL_BUILD_AP_PERIPH) enum AP_HAL::Util::safety_state HALSITL::Util::safety_switch_state(void) { #define HAL_USE_PWM 1 #if HAL_USE_PWM return ((RCOutput *)hal.rcout)->_safety_switch_state(); #else return SAFETY_NONE; #endif } void HALSITL::Util::set_cmdline_parameters() { for (uint16_t i=0; i<sitlState->cmdline_param.available(); i++) { const auto param = sitlState->cmdline_param[i]; if (param != nullptr) { AP_Param::set_default_by_name(param->name, param->value); } } } #endif /** return commandline arguments, if available */ void HALSITL::Util::commandline_arguments(uint8_t &argc, char * const *&argv) { argc = saved_argc; argv = saved_argv; } /** * This method will read random values with set size. */ bool HALSITL::Util::get_random_vals(uint8_t* data, size_t size) { int dev_random = open("/dev/urandom", O_RDONLY); if (dev_random < 0) { return false; } ssize_t result = read(dev_random, data, size); if (result < 0) { close(dev_random); return false; } close(dev_random); return true; } #if HAL_UART_STATS_ENABLED // request information on uart I/O void HALSITL::Util::uart_info(ExpandingString &str) { // Calculate time since last call const uint32_t now_ms = AP_HAL::millis(); const uint32_t dt_ms = now_ms - sys_uart_stats.last_ms; sys_uart_stats.last_ms = now_ms; // a header to allow for machine parsers to determine format str.printf("UARTV1\n"); for (uint8_t i = 0; i < hal.num_serial; i++) { if (i >= ARRAY_SIZE(sitlState->_serial_path)) { continue; } auto *uart = hal.serial(i); if (uart) { str.printf("SERIAL%u ", i); uart->uart_info(str, sys_uart_stats.serial[i], dt_ms); } } } #if HAL_LOGGING_ENABLED // Log UART message for each serial port void HALSITL::Util::uart_log() { // Calculate time since last call const uint32_t now_ms = AP_HAL::millis(); const uint32_t dt_ms = now_ms - log_uart_stats.last_ms; log_uart_stats.last_ms = now_ms; // Loop over all ports for (uint8_t i = 0; i < hal.num_serial; i++) { auto *uart = hal.serial(i); if (uart) { uart->log_stats(i, log_uart_stats.serial[i], dt_ms); } } } #endif // HAL_LOGGING_ENABLED #endif // HAL_UART_STATS_ENABLED