/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see .
*
* Code by Charles "Silvanosky" Villard, David "Buzz" Bussenschutt and Andrey "ARg" Romanov
*
*/
#include "RCOutput.h"
#include
#include
#include
#include
#include "driver/rtc_io.h"
#include
#include "esp_log.h"
#define SERVO_TIMEBASE_RESOLUTION_HZ 1000000 // 1MHz, 1us per tick
#define SERVO_TIMEBASE_PERIOD 20000 // 20000 ticks, 20ms
#define TAG "RCOut"
extern const AP_HAL::HAL& hal;
using namespace ESP32;
#ifdef HAL_ESP32_RCOUT
gpio_num_t outputs_pins[] = HAL_ESP32_RCOUT;
//If the RTC source is not required, then GPIO32/Pin12/32K_XP and GPIO33/Pin13/32K_XN can be used as digital GPIOs.
#else
gpio_num_t outputs_pins[] = {};
#endif
#define MAX_CHANNELS ARRAY_SIZE(outputs_pins)
struct RCOutput::pwm_out RCOutput::pwm_group_list[MAX_CHANNELS];
void RCOutput::init()
{
_max_channels = MAX_CHANNELS;
#ifdef CONFIG_IDF_TARGET_ESP32
// only on plain esp32
// 32 and 33 are special as they dont default to gpio, but can be if u disable their rtc setup:
rtc_gpio_deinit(GPIO_NUM_32);
rtc_gpio_deinit(GPIO_NUM_33);
#endif
printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n");
printf("RCOutput::init() - channels available: %d \n",(int)MAX_CHANNELS);
printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n");
const int MCPWM_CNT = SOC_MCPWM_OPERATORS_PER_GROUP*SOC_MCPWM_GENERATORS_PER_OPERATOR;
for (int i = 0; i < MAX_CHANNELS; ++i) {
mcpwm_timer_handle_t h_timer;
mcpwm_oper_handle_t h_oper;
ESP_LOGI(TAG, "Initialize CH%02d", i+1);
//Save struct infos
pwm_out &out = pwm_group_list[i];
out.group_id = i/MCPWM_CNT;
out.gpio_num = outputs_pins[i];
out.chan = i;
if (0 == i % MCPWM_CNT) {
mcpwm_timer_config_t timer_config = {
.group_id = out.group_id,
.clk_src = MCPWM_TIMER_CLK_SRC_DEFAULT,
.resolution_hz = SERVO_TIMEBASE_RESOLUTION_HZ,
.count_mode = MCPWM_TIMER_COUNT_MODE_UP,
.period_ticks = SERVO_TIMEBASE_PERIOD,
};
ESP_LOGI(TAG, "Initialize timer");
ESP_ERROR_CHECK(mcpwm_new_timer(&timer_config, &h_timer));
out.freq = timer_config.resolution_hz/timer_config.period_ticks;
ESP_LOGI(TAG, "Enable and start timer");
ESP_ERROR_CHECK(mcpwm_timer_enable(h_timer));
ESP_ERROR_CHECK(mcpwm_timer_start_stop(h_timer, MCPWM_TIMER_START_NO_STOP));
}
out.h_timer = h_timer;
if (0 == i % SOC_MCPWM_GENERATORS_PER_OPERATOR) {
ESP_LOGI(TAG, "Initialize operator");
mcpwm_operator_config_t operator_config = {
.group_id = out.group_id, // operator must be in the same group to the timer
};
ESP_ERROR_CHECK(mcpwm_new_operator(&operator_config, &h_oper));
}
out.h_oper = h_oper;
ESP_LOGI(TAG, "Connect timer and operator");
ESP_ERROR_CHECK(mcpwm_operator_connect_timer(out.h_oper, out.h_timer));
ESP_LOGI(TAG, "Create comparator and generator from the operator");
mcpwm_comparator_config_t comparator_config = {};
comparator_config.flags.update_cmp_on_tez = true;
ESP_ERROR_CHECK(mcpwm_new_comparator(out.h_oper, &comparator_config, &out.h_cmpr));
mcpwm_generator_config_t generator_config = {
.gen_gpio_num = out.gpio_num,
};
ESP_ERROR_CHECK(mcpwm_new_generator(out.h_oper, &generator_config, &out.h_gen));
ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(out.h_cmpr, 1500));
out.value = 1500;
ESP_LOGI(TAG, "Set generator action on timer and compare event");
// go high on counter empty
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(out.h_gen,
MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)));
// go low on compare threshold
ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(out.h_gen,
MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, out.h_cmpr, MCPWM_GEN_ACTION_LOW)));
}
_initialized = true;
}
void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz)
{
if (!_initialized) {
return;
}
for (uint8_t i = 0; i < MAX_CHANNELS; i++) {
if (chmask & 1 << i) {
pwm_out &out = pwm_group_list[i];
ESP_ERROR_CHECK(mcpwm_timer_set_period( out.h_timer, SERVO_TIMEBASE_RESOLUTION_HZ/freq_hz));
out.freq = freq_hz;
}
}
}
void RCOutput::set_default_rate(uint16_t freq_hz)
{
if (!_initialized) {
return;
}
set_freq(0xFFFFFFFF, freq_hz);
}
uint16_t RCOutput::get_freq(uint8_t chan)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return 50;
}
pwm_out &out = pwm_group_list[chan];
return out.freq;
}
void RCOutput::enable_ch(uint8_t chan)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
pwm_out &out = pwm_group_list[chan];
ESP_ERROR_CHECK(mcpwm_timer_start_stop(out.h_timer, MCPWM_TIMER_START_NO_STOP));
}
void RCOutput::disable_ch(uint8_t chan)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
write(chan, 0);
pwm_out &out = pwm_group_list[chan];
ESP_ERROR_CHECK(mcpwm_timer_start_stop(out.h_timer, MCPWM_TIMER_STOP_EMPTY));
}
void RCOutput::write(uint8_t chan, uint16_t period_us)
{
if (!_initialized || chan >= MAX_CHANNELS) {
return;
}
if (_corked) {
_pending[chan] = period_us;
_pending_mask |= (1U<= MAX_CHANNELS || !_initialized) {
return 0;
}
pwm_out &out = pwm_group_list[chan];
return out.value;
}
void RCOutput::read(uint16_t *period_us, uint8_t len)
{
for (int i = 0; i < MIN(len, _max_channels); i++) {
period_us[i] = read(i);
}
}
void RCOutput::cork()
{
_corked = true;
}
void RCOutput::push()
{
if (!_corked) {
return;
}
bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED;
for (uint8_t i = 0; i < MAX_CHANNELS; i++) {
if ((1U<= MAX_CHANNELS) {
return;
}
bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED;
if (safety_on && !(safety_mask & (1U<<(chan)))) {
// safety is on, overwride pwm
period_us = safe_pwm[chan];
}
pwm_out &out = pwm_group_list[chan];
ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(out.h_cmpr, period_us));
out.value = period_us;
}
/*
get safety switch state for Util.cpp
*/
AP_HAL::Util::safety_state RCOutput::_safety_switch_state(void)
{
if (!hal.util->was_watchdog_reset()) {
hal.util->persistent_data.safety_state = safety_state;
}
return safety_state;
}
/*
force the safety switch on, disabling PWM output from the IO board
*/
bool RCOutput::force_safety_on(void)
{
safety_state = AP_HAL::Util::SAFETY_DISARMED;
return true;
}
/*
force the safety switch off, enabling PWM output from the IO board
*/
void RCOutput::force_safety_off(void)
{
safety_state = AP_HAL::Util::SAFETY_ARMED;
}
/*
set PWM to send to a set of channels when the safety switch is
in the safe state
*/
void RCOutput::set_safety_pwm(uint32_t chmask, uint16_t period_us)
{
for (uint8_t i=0; i<16; i++) {
if (chmask & (1U<get_safety_mask();
}
#ifdef HAL_GPIO_PIN_SAFETY_IN
gpio_set_direction((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN, GPIO_MODE_INPUT);
gpio_set_pull_mode((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN, GPIO_PULLDOWN_ONLY);
bool safety_pressed = gpio_get_level((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN);
if (safety_pressed) {
AP_BoardConfig *brdconfig = AP_BoardConfig::get_singleton();
if (safety_press_count < UINT8_MAX) {
safety_press_count++;
}
if (brdconfig && brdconfig->safety_button_handle_pressed(safety_press_count)) {
if (safety_state ==AP_HAL::Util::SAFETY_ARMED) {
safety_state = AP_HAL::Util::SAFETY_DISARMED;
} else {
safety_state = AP_HAL::Util::SAFETY_ARMED;
}
}
} else {
safety_press_count = 0;
}
#endif
#ifdef HAL_GPIO_PIN_LED_SAFETY
led_counter = (led_counter+1) % 16;
const uint16_t led_pattern = safety_state==AP_HAL::Util::SAFETY_DISARMED?0x5500:0xFFFF;
gpio_set_level((gpio_num_t)HAL_GPIO_PIN_LED_SAFETY, (led_pattern & (1U << led_counter))?0:1);
#endif
}
/*
set PWM to send to a set of channels if the FMU firmware dies
*/
void RCOutput::set_failsafe_pwm(uint32_t chmask, uint16_t period_us)
{
//RIP (not the pointer)
}