/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * Code by Charles "Silvanosky" Villard, David "Buzz" Bussenschutt and Andrey "ARg" Romanov * */ #include "RCOutput.h" #include #include #include #include #include "driver/rtc_io.h" #include #include "esp_log.h" #define SERVO_TIMEBASE_RESOLUTION_HZ 1000000 // 1MHz, 1us per tick #define SERVO_TIMEBASE_PERIOD 20000 // 20000 ticks, 20ms #define TAG "RCOut" extern const AP_HAL::HAL& hal; using namespace ESP32; #ifdef HAL_ESP32_RCOUT gpio_num_t outputs_pins[] = HAL_ESP32_RCOUT; //If the RTC source is not required, then GPIO32/Pin12/32K_XP and GPIO33/Pin13/32K_XN can be used as digital GPIOs. #else gpio_num_t outputs_pins[] = {}; #endif #define MAX_CHANNELS ARRAY_SIZE(outputs_pins) struct RCOutput::pwm_out RCOutput::pwm_group_list[MAX_CHANNELS]; void RCOutput::init() { _max_channels = MAX_CHANNELS; #ifdef CONFIG_IDF_TARGET_ESP32 // only on plain esp32 // 32 and 33 are special as they dont default to gpio, but can be if u disable their rtc setup: rtc_gpio_deinit(GPIO_NUM_32); rtc_gpio_deinit(GPIO_NUM_33); #endif printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n"); printf("RCOutput::init() - channels available: %d \n",(int)MAX_CHANNELS); printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n"); const int MCPWM_CNT = SOC_MCPWM_OPERATORS_PER_GROUP*SOC_MCPWM_GENERATORS_PER_OPERATOR; for (int i = 0; i < MAX_CHANNELS; ++i) { mcpwm_timer_handle_t h_timer; mcpwm_oper_handle_t h_oper; ESP_LOGI(TAG, "Initialize CH%02d", i+1); //Save struct infos pwm_out &out = pwm_group_list[i]; out.group_id = i/MCPWM_CNT; out.gpio_num = outputs_pins[i]; out.chan = i; if (0 == i % MCPWM_CNT) { mcpwm_timer_config_t timer_config = { .group_id = out.group_id, .clk_src = MCPWM_TIMER_CLK_SRC_DEFAULT, .resolution_hz = SERVO_TIMEBASE_RESOLUTION_HZ, .count_mode = MCPWM_TIMER_COUNT_MODE_UP, .period_ticks = SERVO_TIMEBASE_PERIOD, }; ESP_LOGI(TAG, "Initialize timer"); ESP_ERROR_CHECK(mcpwm_new_timer(&timer_config, &h_timer)); out.freq = timer_config.resolution_hz/timer_config.period_ticks; ESP_LOGI(TAG, "Enable and start timer"); ESP_ERROR_CHECK(mcpwm_timer_enable(h_timer)); ESP_ERROR_CHECK(mcpwm_timer_start_stop(h_timer, MCPWM_TIMER_START_NO_STOP)); } out.h_timer = h_timer; if (0 == i % SOC_MCPWM_GENERATORS_PER_OPERATOR) { ESP_LOGI(TAG, "Initialize operator"); mcpwm_operator_config_t operator_config = { .group_id = out.group_id, // operator must be in the same group to the timer }; ESP_ERROR_CHECK(mcpwm_new_operator(&operator_config, &h_oper)); } out.h_oper = h_oper; ESP_LOGI(TAG, "Connect timer and operator"); ESP_ERROR_CHECK(mcpwm_operator_connect_timer(out.h_oper, out.h_timer)); ESP_LOGI(TAG, "Create comparator and generator from the operator"); mcpwm_comparator_config_t comparator_config = {}; comparator_config.flags.update_cmp_on_tez = true; ESP_ERROR_CHECK(mcpwm_new_comparator(out.h_oper, &comparator_config, &out.h_cmpr)); mcpwm_generator_config_t generator_config = { .gen_gpio_num = out.gpio_num, }; ESP_ERROR_CHECK(mcpwm_new_generator(out.h_oper, &generator_config, &out.h_gen)); ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(out.h_cmpr, 1500)); out.value = 1500; ESP_LOGI(TAG, "Set generator action on timer and compare event"); // go high on counter empty ESP_ERROR_CHECK(mcpwm_generator_set_action_on_timer_event(out.h_gen, MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH))); // go low on compare threshold ESP_ERROR_CHECK(mcpwm_generator_set_action_on_compare_event(out.h_gen, MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, out.h_cmpr, MCPWM_GEN_ACTION_LOW))); } _initialized = true; } void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz) { if (!_initialized) { return; } for (uint8_t i = 0; i < MAX_CHANNELS; i++) { if (chmask & 1 << i) { pwm_out &out = pwm_group_list[i]; ESP_ERROR_CHECK(mcpwm_timer_set_period( out.h_timer, SERVO_TIMEBASE_RESOLUTION_HZ/freq_hz)); out.freq = freq_hz; } } } void RCOutput::set_default_rate(uint16_t freq_hz) { if (!_initialized) { return; } set_freq(0xFFFFFFFF, freq_hz); } uint16_t RCOutput::get_freq(uint8_t chan) { if (!_initialized || chan >= MAX_CHANNELS) { return 50; } pwm_out &out = pwm_group_list[chan]; return out.freq; } void RCOutput::enable_ch(uint8_t chan) { if (!_initialized || chan >= MAX_CHANNELS) { return; } pwm_out &out = pwm_group_list[chan]; ESP_ERROR_CHECK(mcpwm_timer_start_stop(out.h_timer, MCPWM_TIMER_START_NO_STOP)); } void RCOutput::disable_ch(uint8_t chan) { if (!_initialized || chan >= MAX_CHANNELS) { return; } write(chan, 0); pwm_out &out = pwm_group_list[chan]; ESP_ERROR_CHECK(mcpwm_timer_start_stop(out.h_timer, MCPWM_TIMER_STOP_EMPTY)); } void RCOutput::write(uint8_t chan, uint16_t period_us) { if (!_initialized || chan >= MAX_CHANNELS) { return; } if (_corked) { _pending[chan] = period_us; _pending_mask |= (1U<= MAX_CHANNELS || !_initialized) { return 0; } pwm_out &out = pwm_group_list[chan]; return out.value; } void RCOutput::read(uint16_t *period_us, uint8_t len) { for (int i = 0; i < MIN(len, _max_channels); i++) { period_us[i] = read(i); } } void RCOutput::cork() { _corked = true; } void RCOutput::push() { if (!_corked) { return; } bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED; for (uint8_t i = 0; i < MAX_CHANNELS; i++) { if ((1U<= MAX_CHANNELS) { return; } bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED; if (safety_on && !(safety_mask & (1U<<(chan)))) { // safety is on, overwride pwm period_us = safe_pwm[chan]; } pwm_out &out = pwm_group_list[chan]; ESP_ERROR_CHECK(mcpwm_comparator_set_compare_value(out.h_cmpr, period_us)); out.value = period_us; } /* get safety switch state for Util.cpp */ AP_HAL::Util::safety_state RCOutput::_safety_switch_state(void) { if (!hal.util->was_watchdog_reset()) { hal.util->persistent_data.safety_state = safety_state; } return safety_state; } /* force the safety switch on, disabling PWM output from the IO board */ bool RCOutput::force_safety_on(void) { safety_state = AP_HAL::Util::SAFETY_DISARMED; return true; } /* force the safety switch off, enabling PWM output from the IO board */ void RCOutput::force_safety_off(void) { safety_state = AP_HAL::Util::SAFETY_ARMED; } /* set PWM to send to a set of channels when the safety switch is in the safe state */ void RCOutput::set_safety_pwm(uint32_t chmask, uint16_t period_us) { for (uint8_t i=0; i<16; i++) { if (chmask & (1U<get_safety_mask(); } #ifdef HAL_GPIO_PIN_SAFETY_IN gpio_set_direction((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN, GPIO_MODE_INPUT); gpio_set_pull_mode((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN, GPIO_PULLDOWN_ONLY); bool safety_pressed = gpio_get_level((gpio_num_t)HAL_GPIO_PIN_SAFETY_IN); if (safety_pressed) { AP_BoardConfig *brdconfig = AP_BoardConfig::get_singleton(); if (safety_press_count < UINT8_MAX) { safety_press_count++; } if (brdconfig && brdconfig->safety_button_handle_pressed(safety_press_count)) { if (safety_state ==AP_HAL::Util::SAFETY_ARMED) { safety_state = AP_HAL::Util::SAFETY_DISARMED; } else { safety_state = AP_HAL::Util::SAFETY_ARMED; } } } else { safety_press_count = 0; } #endif #ifdef HAL_GPIO_PIN_LED_SAFETY led_counter = (led_counter+1) % 16; const uint16_t led_pattern = safety_state==AP_HAL::Util::SAFETY_DISARMED?0x5500:0xFFFF; gpio_set_level((gpio_num_t)HAL_GPIO_PIN_LED_SAFETY, (led_pattern & (1U << led_counter))?0:1); #endif } /* set PWM to send to a set of channels if the FMU firmware dies */ void RCOutput::set_failsafe_pwm(uint32_t chmask, uint16_t period_us) { //RIP (not the pointer) }