/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* simulate ship takeoff/landing */ #include "SIM_config.h" #if AP_SIM_SHIP_ENABLED #include "SIM_Ship.h" #include "SITL.h" #include <stdio.h> #include "SIM_Aircraft.h" #include <AP_HAL_SITL/SITL_State.h> #include <AP_Terrain/AP_Terrain.h> using namespace SITL; // SITL Ship parameters const AP_Param::GroupInfo ShipSim::var_info[] = { AP_GROUPINFO("ENABLE", 1, ShipSim, enable, 0), AP_GROUPINFO("SPEED", 2, ShipSim, speed, 3), AP_GROUPINFO("PSIZE", 3, ShipSim, path_size, 1000), AP_GROUPINFO("SYSID", 4, ShipSim, sys_id, 17), AP_GROUPINFO("DSIZE", 5, ShipSim, deck_size, 10), AP_GROUPINFO("OFS", 7, ShipSim, offset, 0), AP_GROUPEND }; /* update a simulated vehicle */ void Ship::update(float delta_t) { // acceletate over time to keep EKF happy const float max_accel = 3.0; const float dspeed_max = max_accel * delta_t; speed = constrain_float(sim->speed.get(), speed-dspeed_max, speed+dspeed_max); // calculate how far around the circle we go float circumference = M_PI * sim->path_size.get(); float dist = delta_t * speed; float dangle = (dist / circumference) * 360.0; if (delta_t > 0) { yaw_rate = radians(dangle) / delta_t; } heading_deg += dangle; heading_deg = wrap_360(heading_deg); Vector2f dpos(dist, 0); dpos.rotate(radians(heading_deg)); position += dpos; } ShipSim::ShipSim() { AP_Param::setup_object_defaults(this, var_info); } /* get the location of the ship */ bool ShipSim::get_location(Location &loc) const { if (!enable) { return false; } loc = home; loc.offset(ship.position.x, ship.position.y); return true; } /* get ground speed adjustment if we are landed on the ship */ Vector2f ShipSim::get_ground_speed_adjustment(const Location &loc, float &yaw_rate) { Location shiploc; if (!get_location(shiploc)) { yaw_rate = 0; return Vector2f(0,0); } if (loc.get_distance(shiploc) > deck_size) { yaw_rate = 0; return Vector2f(0,0); } // find center of the circle that the ship is on Location center = shiploc; const float path_radius = path_size.get()*0.5; center.offset_bearing(ship.heading_deg+(ship.yaw_rate>0?90:-90), path_radius); // scale speed for ratio of distances const float p = center.get_distance(loc) / path_radius; const float scaled_speed = ship.speed * p; // work out how far around the circle ahead or behind we are for // rotating velocity const float bearing1 = center.get_bearing(loc); const float bearing2 = center.get_bearing(shiploc); const float heading = ship.heading_deg + degrees(bearing1-bearing2); Vector2f vel(scaled_speed, 0); vel.rotate(radians(heading)); yaw_rate = ship.yaw_rate; return vel; } /* update the ShipSim peripheral state */ void ShipSim::update(void) { if (!enable) { return; } auto *sitl = AP::sitl(); uint32_t now_us = AP_HAL::micros(); if (!initialised) { home = sitl->state.home; if (home.lat == 0 && home.lng == 0) { return; } const Vector3f &ofs = offset.get(); home.offset(ofs.x, ofs.y); home.alt -= ofs.z*100; initialised = true; ::printf("ShipSim home %f %f\n", home.lat*1.0e-7, home.lng*1.0e-7); ship.sim = this; last_update_us = now_us; last_report_ms = AP_HAL::millis(); } float dt = (now_us - last_update_us)*1.0e-6; last_update_us = now_us; ship.update(dt); uint32_t now_ms = AP_HAL::millis(); if (now_ms - last_report_ms >= reporting_period_ms) { last_report_ms = now_ms; send_report(); } } /* send a report to the vehicle control code over MAVLink */ void ShipSim::send_report(void) { if (!mavlink_connected && mav_socket.connect(target_address, target_port)) { ::printf("ShipSim connected to %s:%u\n", target_address, (unsigned)target_port); mavlink_connected = true; } if (!mavlink_connected) { return; } uint32_t now = AP_HAL::millis(); const uint8_t component_id = MAV_COMP_ID_USER10; if (now - last_heartbeat_ms >= 1000) { last_heartbeat_ms = now; const mavlink_heartbeat_t heartbeat{ type : MAV_TYPE_SURFACE_BOAT, autopilot : MAV_AUTOPILOT_INVALID}; mavlink_message_t msg; mavlink_msg_heartbeat_encode_status( sys_id.get(), component_id, &mav_status, &msg, &heartbeat); uint8_t buf[300]; const uint16_t len = mavlink_msg_to_send_buffer(buf, &msg); mav_socket.send(buf, len); } /* send a GLOBAL_POSITION_INT messages */ Location loc; if (!get_location(loc)) { return; } int32_t alt_mm = home.alt * 10; // assume home altitude #if AP_TERRAIN_AVAILABLE auto terrain = AP::terrain(); float height; if (terrain != nullptr && terrain->enabled() && terrain->height_amsl(loc, height, false)) { alt_mm = height * 1000; } #endif { // send position Vector2f vel(ship.speed, 0); vel.rotate(radians(ship.heading_deg)); const mavlink_global_position_int_t global_position_int{ now, loc.lat, loc.lng, alt_mm, 0, int16_t(vel.x*100), int16_t(vel.y*100), 0, uint16_t(ship.heading_deg*100) }; mavlink_message_t msg; mavlink_msg_global_position_int_encode_status( sys_id, component_id, &mav_status, &msg, &global_position_int); uint8_t buf[300]; const uint16_t len = mavlink_msg_to_send_buffer(buf, &msg); if (len > 0) { mav_socket.send(buf, len); } } { // also set ATTITUDE so MissionPlanner can display ship orientation const mavlink_attitude_t attitude{ now, 0, 0, float(radians(ship.heading_deg)), 0, 0, ship.yaw_rate }; mavlink_message_t msg; mavlink_msg_attitude_encode_status( sys_id, component_id, &mav_status, &msg, &attitude); uint8_t buf[300]; const uint16_t len = mavlink_msg_to_send_buffer(buf, &msg); if (len > 0) { mav_socket.send(buf, len); } } } #endif