#pragma once #include <AP_Math/AP_Math.h> #define COMPASS_CAL_NUM_SPHERE_PARAMS 4 #define COMPASS_CAL_NUM_ELLIPSOID_PARAMS 9 #define COMPASS_CAL_NUM_SAMPLES 300 // number of samples required before fitting begins #define COMPASS_MAX_SCALE_FACTOR 1.5 #define COMPASS_MIN_SCALE_FACTOR (1.0/COMPASS_MAX_SCALE_FACTOR) class CompassCalibrator { public: CompassCalibrator(); // start or stop the calibration void start(bool retry, float delay, uint16_t offset_max, uint8_t compass_idx, float tolerance); void stop(); // Update point sample void new_sample(const Vector3f& sample); // set compass's initial orientation and whether it should be automatically fixed (if required) void set_orientation(enum Rotation orientation, bool is_external, bool fix_orientation, bool always_45_deg); // running is true if actively calculating offsets, diagonals or offdiagonals bool running(); // failed is true if either of the failure states are hit bool failed(); // update the state machine and calculate offsets, diagonals and offdiagonals void update(); // compass calibration states enum class Status { NOT_STARTED = 0, WAITING_TO_START = 1, RUNNING_STEP_ONE = 2, RUNNING_STEP_TWO = 3, SUCCESS = 4, FAILED = 5, BAD_ORIENTATION = 6, BAD_RADIUS = 7, }; // get completion mask for mavlink reporting (a bitmask of faces/directions for which we have compass samples) typedef uint8_t completion_mask_t[10]; // Structure accessed for cal status update via mavlink struct State { Status status; uint8_t attempt; float completion_pct; completion_mask_t completion_mask; } cal_state; // Structure accessed after calibration is finished/failed struct Report { Status status; float fitness; Vector3f ofs; Vector3f diag; Vector3f offdiag; float orientation_confidence; Rotation original_orientation; Rotation orientation; float scale_factor; bool check_orientation; } cal_report; // Structure setup to set calibration run settings struct Settings { float tolerance; bool check_orientation; enum Rotation orientation; enum Rotation orig_orientation; bool is_external; bool fix_orientation; uint16_t offset_max; uint8_t attempt; bool retry; float delay_start_sec; uint32_t start_time_ms; uint8_t compass_idx; bool always_45_deg; } cal_settings; // Get calibration result const Report get_report(); // Get current Calibration state const State get_state(); protected: // convert index to rotation, this allows to skip some rotations // protected so CompassCalibrator_index_test can see it Rotation auto_rotation_index(uint8_t n) const; // return true if this is a right angle rotation bool right_angle_rotation(Rotation r) const; private: // results class param_t { public: float* get_sphere_params() { return &radius; } float* get_ellipsoid_params() { return &offset.x; } float radius; // magnetic field strength calculated from samples Vector3f offset; // offsets Vector3f diag; // diagonal scaling Vector3f offdiag; // off diagonal scaling float scale_factor; // scaling factor to compensate for radius error }; // compact class for approximate attitude, to save memory class AttitudeSample { public: Matrix3f get_rotmat() const; void set_from_ahrs(); private: int8_t roll; int8_t pitch; int8_t yaw; }; // compact class to hold compass samples, to save memory class CompassSample { public: Vector3f get() const; void set(const Vector3f &in); AttitudeSample att; private: int16_t x; int16_t y; int16_t z; }; // set status including any required initialisation bool set_status(Status status); // consume point raw sample from intermediate structure void pull_sample(); // returns true if sample should be added to buffer bool accept_sample(const Vector3f &sample, uint16_t skip_index = UINT16_MAX); bool accept_sample(const CompassSample &sample, uint16_t skip_index = UINT16_MAX); // returns true if fit is acceptable bool fit_acceptable() const; // clear sample buffer and reset offsets and scaling to their defaults void reset_state(); // initialize fitness before starting a fit void initialize_fit(); // true if enough samples have been collected and fitting has begun (aka runniong()) bool _fitting() const; // thins out samples between step one and step two void thin_samples(); // calc the fitness of a single sample vs a set of parameters (offsets, diagonals, off diagonals) float calc_residual(const Vector3f& sample, const param_t& params) const; // calc the fitness of the parameters (offsets, diagonals, off diagonals) vs all the samples collected // returns 1.0e30f if the sample buffer is empty float calc_mean_squared_residuals(const param_t& params) const; // calculate initial offsets by simply taking the average values of the samples void calc_initial_offset(); // run sphere fit to calculate diagonals and offdiagonals void calc_sphere_jacob(const Vector3f& sample, const param_t& params, float* ret) const; void run_sphere_fit(); // run ellipsoid fit to calculate diagonals and offdiagonals void calc_ellipsoid_jacob(const Vector3f& sample, const param_t& params, float* ret) const; void run_ellipsoid_fit(); // update the completion mask based on a single sample void update_completion_mask(const Vector3f& sample); // reset and updated the completion mask using all samples in the sample buffer void update_completion_mask(); // calculate compass orientation Vector3f calculate_earth_field(CompassSample &sample, enum Rotation r); bool calculate_orientation(); // fix radius to compensate for sensor scaling errors bool fix_radius(); // update methods to read write intermediate structures, called inside thread inline void update_cal_status(); inline void update_cal_report(); inline void update_cal_settings(); // running method for use in thread bool _running() const; uint8_t _compass_idx; // index of the compass providing data Status _status; // current state of calibrator // values provided by caller float _delay_start_sec; // seconds to delay start of calibration (provided by caller) bool _retry; // true if calibration should be restarted on failured (provided by caller) float _tolerance = 5.0; // worst acceptable RMS tolerance (aka fitness). see set_tolerance() uint16_t _offset_max; // maximum acceptable offsets (provided by caller) // behavioral state uint32_t _start_time_ms; // system time start() function was last called uint8_t _attempt; // number of attempts have been made to calibrate completion_mask_t _completion_mask; // bitmask of directions in which we have samples CompassSample *_sample_buffer; // buffer of sensor values uint16_t _samples_collected; // number of samples in buffer uint16_t _samples_thinned; // number of samples removed by the thin_samples() call (called before step 2 begins) // fit state class param_t _params; // latest calibration outputs uint16_t _fit_step; // step during RUNNING_STEP_ONE/TWO which performs sphere fit and ellipsoid fit float _fitness; // fitness (mean squared residuals) of current parameters float _initial_fitness; // fitness before latest "fit" was attempted (used to determine if fit was an improvement) float _sphere_lambda; // sphere fit's lambda float _ellipsoid_lambda; // ellipsoid fit's lambda // variables for orientation checking enum Rotation _orientation; // latest detected orientation enum Rotation _orig_orientation; // original orientation provided by caller enum Rotation _orientation_solution; // latest solution bool _is_external; // true if compass is external (provided by caller) bool _check_orientation; // true if orientation should be automatically checked bool _fix_orientation; // true if orientation should be fixed if necessary bool _always_45_deg; // true if orentation should considder 45deg with equal tolerance float _orientation_confidence; // measure of confidence in automatic orientation detection CompassSample _last_sample; Status _requested_status; bool _status_set_requested; bool _new_sample; // Semaphore for state related intermediate structures HAL_Semaphore state_sem; // Semaphore for intermediate structure for point sample collection HAL_Semaphore sample_sem; };