In order to avoid confusion between sample rate from sensor and sample rate
from the frontend class (AP_InertialSensor), use "raw sample rate" to refer to
the former.
The changes in the code were basically done with the following commands:
git grep -wl _accel_sample_rates | xargs sed -i "s,\<_accel_sample_rates\>,_accel_raw_sample_rates,g"
git grep -wl _set_accel_sample_rate | xargs sed -i "s,\<_set_accel_sample_rate\>,_set_accel_raw_sample_rate,g"
git grep -wl _accel_sample_rate | xargs sed -i "s,\<_accel_sample_rate\>,_accel_raw_sample_rate,g"
git grep -wl _gyro_sample_rates | xargs sed -i "s,\<_gyro_sample_rates\>,_gyro_raw_sample_rates,g"
git grep -wl _set_gyro_sample_rate | xargs sed -i "s,\<_set_gyro_sample_rate\>,_set_gyro_raw_sample_rate,g"
git grep -wl _gyro_sample_rate | xargs sed -i "s,\<_gyro_sample_rate\>,_gyro_raw_sample_rate,g"
And also with minor changes on indentation and comments.
Delta angle calculation is now unified, so there is no need for such a method.
That also avoids developers thinking they need that method being called
somewhere in their new drivers.
This commit basically moves delta angle calculation that was previously done in
AP_InertialSensor_PX4 to a common place. Instances must publish their gyro raw
sample rate to enable delta angle calculation.
The delta velocity calculation is now unified, so there is no need for such a
method. That also avoids delevopers thinking they need that method being called
somewhere in their new drivers.
This commit basically moves delta velocity calculation that was previously done
in AP_InertialSensor_PX4 to a common place. Instances must publish their accel
raw sample rate to enable delta velocity calculation.
Now that we are using a consistent 50Hz minimum update rate for the covariance prediction we do not need a different initial gyro bias uncertainty for plane and copter to maintain filter stability margins.
The default value of 0.1 rad/s was too high and gave excessive settling time of the filter attitude after startup.
The initial attitude uncertainty has been increased to allow for some movement during startup.
This commit adds the class Linux::GPIO_Sysfs. This class provides a generic
implementation of AP_HAL::GPIO on Linux by using GPIO Sysfs Interface
(https://www.kernel.org/doc/Documentation/gpio/sysfs.txt).
The channel() interface should be preferred in places that need to be
fast. Since it maintains the file descriptor open this is much faster
than opening and closing it.
We are using a microcontroller to read the PWM input from RC. The read
values are sent to our board using a simple serial protocol through the
UART interface.
This patch interprets these values and passes them forward to the APM.
If the baro data and magnetometer data are interleaved (arriving every 100 msec and offset by 50 msec), then the filter will go unstable during startup and fail to complete checks.
Since we are using uint8_t and uint16_t types we need to include the
correspondent system header. Otherwise it would depend on the include
order of who is including this particular header, causing failures as we
move headers around.
This sets the fusion of the synthetic position and velocity to occur at the same time as the barometer
This makes filter tuning more consistent between GPS and non-GPS useage
High measurement data rates can fill buffers with data that is always new and never fused because it is over-written before it falls behind the measurement time horizon.
new param: NAVL1_XTRACK_I
// @Description: Crosstrack error integrator gain. This gain is applied to the crosstrack error to ensure it converges to zero. Set to zero to disable. Smaller values converge slower, higher values will cause crosstrack error oscillation.
fixes https://github.com/diydrones/ardupilot/issues/2650
when param is changed the integrator is set to zero. This makes for easier tuning by seeing it converge to zero on each change.
This option now is passed when instantiating the code in ArduCopter, so
selecting the default value at compile time is not necessary anymore.
The motivation is to move vehicle specifc code out of the general
libraries. This patch shouldn't change behavior.
The AHRS_EKF_USE_ALWAYS define is used to force EKF to be always
used. It is defined only for building ArduCopter. Change it to be a
runtime flag. Keep its default value still based on the original define,
once the Copter uses it the define will be removed.
The motivation is to move vehicle specifc code out of the general
libraries. This patch shouldn't change behavior.
For all supported boards the maximum number of instances is 3. The
number of HIL_COMPASSES was already defined as 2 instead of 3, so this
is left as before.
We don't support HAL_CPU_CLASS <= HAL_CPU_CLASS_16 anymore. This makes
COMPASS_MAX_INSTANCES and COMPASS_MAX_BACKEND constant for all supported
boards.
We don't support HAL_CPU_CLASS <= HAL_CPU_CLASS_16 anymore. This makes
INS_MAX_INSTANCES, INS_MAX_BACKENDS and INS_VIBRATION_CHECK constant for
all supported boards.
The code with ifdef for !FAST_SAMPLING is bit rotting and the example
for AP_InertialSensor is currently broken for this case. Instead of
adding more ifdefs, remove the legacy implementation for !FAST_SAMPLING
since we don't support it anymore.
Reported by Grant:
/home/grant/3dr/ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_MPU6000.cpp:
In member function 'void AP_InertialSensor_MPU6000::_accumulate(uint8_t*,
uint8_t)':
/home/grant/3dr/ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_MPU6000.cpp:776:20:
error: no match for 'operator+=' (operand types are 'Vector3l {aka
Vector3<long int>}' and 'Vector3f {aka Vector3<float>}')
_accel_sum += accel;
/home/grant/3dr/ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_MPU6000.cpp:777:19:
error: no match for 'operator+=' (operand types are 'Vector3l {aka
Vector3<long int>}' and 'Vector3f {aka Vector3<float>}')
_gyro_sum += gyro;
Add libraries that those boards depend on. This should be handled in the
future elsewhere (and once for each board), but for now let's make it
compile again.
Remove unnecessary includes, in particular the includes for specific
boards. The list of libraries for 'polygon' example was updated so that
the example compiles again.
This is going to be used by vehicles that already have an object with
setup/loop functions. The vehicle object will just implement the
HAL::Callbacks interface.
Move the macros to a single place and reduce the variations not based on
board, but based on
- The name of the entry-point function, specified by AP_MAIN;
- Whether it contains argc/argv arguments or not.
The goal here is that programs (vehicles and examples) don't need to
include all possible boards to define a main function. Further patches
will change the programs.
Add run method, that encapsulate any mainloop logic on behalf of the
client code. The setup/loop functions are passed via a HAL::Callbacks
interface. The AP_HAL_MAIN() macro should be kept as trivial as
possible.
This interface should be implemented by the existing vehicle objects. To
make easy for the examples (that don't have the equivalent of vehicle
objects), a FunCallbacks was added to bridge to the functions directly.
Instead of requiring every program to specify the HAL related modules,
let the build system do it (in practice everything we compiled depended
on HAL anyway). This allow including only the necessary files in the
compilation.
The switching between different AP_HAL was happening by giving different
definitions of AP_HAL_BOARD_DRIVER, and the programs would use it to
instantiate.
A program or library code would have to explicitly include (and depend)
on the concrete implementation of the HAL, even when using it only via
interface.
The proposed change move this dependency to be link time. There is a
AP_HAL::get_HAL() function that is used by the client code. Each
implementation of HAL provides its own definition of this function,
returning the appropriate concrete instance.
Since this replaces the job of AP_HAL_BOARD_DRIVER, the definition was
removed.
The static variables for PX4 and VRBRAIN were named differently to avoid
shadowing the extern symbol 'hal'.
The legacy EKF switches GPs aiding on on arming, whereas the new EKF switches it on based on GPS data quality.
This means the decision to arm and therefore the predicted solution flags must now reflect the actual status of the navigation solution as it will no longer change when motor arming occurs.
If high vibration levels cause offsets between the two, it switches to the accelerometer with lower vibration levels. The default behaviour is to use the average of both accelerometers.
Don't fuse other measurements on the same frame that magnetometer measurements arrive if running at a high frame rate as there will be insufficient time to complete other operations.
This parameter is a compromise between numerical accuracy of the covariance prediction and sensor timing jitter
Further testing has shown that doing covariance prediction and sensor fusion every 10msec has no observable effect on fusion health and reduces timing hitter noise on magnetometer observations during high rate maneovures
The values chosen ensure that up to consistent 250 msec of sensor delay compensation is available for different platform types
The revised values also ensure that fusion occurs at different time to when the 10Hz magnetometer measurements are read
Adds fusion of the declination when there are no earth relative measurements so that the declination angle and therefore the copters yaw angle have an absolute reference.
This enables the length (but not the declination) of the earth field North/East states to change along with the magnetometer offsets.
Provide an option to always do learning
Make field learning decision logic clearer
Change defaults so that plane learns when airborne
Change defaults so that Rover does not learn (large external magnetic interference)
Magnetic interference whilst on the ground can adversely affect filter states. This patch ensures that the simpler and more robust magnetic heading observation method is used until the vehicle has cleared the ground.
Fixes code that didn't take into account fall-through behaviour of C++ switch statements
Makes get_rigin furnction more generic allowing the consumer to decide what to do with an invalid origin
If an external gyro calibration has been performed, we should assume that it has been done under static conditions
Otherwise it is pointless and we should allow the EKF to find its own gyro bias offsets.
This patch adds additional methods to the the AHRS library so that the AP_InertialNav library dow nto have to access the EKF directly. This enables Copter to fly using the EKF nominated by AHRS_EKF_TYPE.
It will also pave the way to elimination of the AP_InertialNav library.
This warning happens because of the difference of datatypes between
32 and 64 bits processors.
%% libraries/AP_HAL_Linux/RCInput_UDP.o
/home/zehortigoza/dev/ardupilot/libraries/AP_HAL_Linux/RCInput_UDP.cpp: In member function 'virtual void Linux::LinuxRCInput_UDP::_timer_tick()':
/home/zehortigoza/dev/ardupilot/libraries/AP_HAL_Linux/RCInput_UDP.cpp:42:72: warning: format '%llu' expects argument of type 'long long unsigned int', but argument 3 has type 'uint64_t {aka long unsigned int}' [-Wformat=]
hal.console->printf("no rc cmds received for %llu\n", delay);
As AVR2560 is not supported anymore and do integer operations is
usually faster than float-point the _calculate() implementation was
done using only integer operations and as more close to what
datasheet says.
offset parameter units are milligauss
User settable parameters should have a User category defined. Those that should never be set by a user should not have this.
The function rotate_field() can change the values axes and the function
correct_field() applies offsets (which are already in milligauss). Thus any
sensitivity adjustment must be done for two reasons:
(1) The offsets must be applied to the values already in milligauss;
(2) The factory sensitivity adjustment values are per axis, if any rotation
that switches axes is applied, that'll mess with the adjustment.
Experiments showed that before this patch the length of the mag field reported
quite different from the expected. After this patch, the same experiments
showed reasonable values.
This is part of the transition to make all mag field values be used in
milligauss. Additionally the value of _gain_multiple is adapted to the new way
we're using it and corrected accordingly to the datasheets.
The use of _gain_multiple is not necessary because the values of
expected_{x,yz} and _mag_{x,y,z} are both in sensor raw unit (i.e., lsbs).
That wasn't fixed before in order not to make APM users to recalibrate their
compasses.
The failure to initialise the magnetometer bias states to zero can result in a large jump in yaw gyro bias and heading when a heading reset is performed.
Fixes a potential error where changes to timing and arrival rate of magnetometer and baro data could block the fusion of synthetic position and velocity measurements, allowing unrestrained tilt errors during operation without GPS or optical flow.
Fusion of synthetic position or velocity measurements is now timed to coincide with fusion of barometer observations.
If a new barometer observation has not arrived after 200 msec then the synthetic position or velocity is fused anyway so that fusion of synthetic position or velocity observations cannot occur any slower than 5 Hz
Previous check default only checked the number of satellites and horizontal position accuracy.
Updated default value also checks HDoP and speed accuracy.