Fix the comments around AP_Meta_class::meta_cast; they were leftovers from an earlier implementation and entirely not helpful.
git-svn-id: https://arducopter.googlecode.com/svn/trunk@1530 f9c3cf11-9bcb-44bc-f272-b75c42450872
The format is a simple TLV format; a tag identifying the variable, a length for the variable, and then the actual data. This format could ultimately be extended to include waypoint/commands as well.
This allows us to load and save groups of variables to EEPROM without having to have a static EEPROM map.
Still needs unit tests and (probably) bugfixing.
git-svn-id: https://arducopter.googlecode.com/svn/trunk@1522 f9c3cf11-9bcb-44bc-f272-b75c42450872
- Add a default ctor/dtor pair. The dtor ensures that all dtors are virtual, and guarantees that there is something in the dtor vtable slot for classes that don't implement their own.
- serialize must not alter the class, mark it const
- Improve documentation
- Fix handle validation to prevent trying to read 2 bytes beyond the end of memory
git-svn-id: https://arducopter.googlecode.com/svn/trunk@1416 f9c3cf11-9bcb-44bc-f272-b75c42450872
The overriding principle here is to keep the use of AP_Vars as simple as possible, whilst letting the implementation do useful things behind the scenes. To that end, we define AP_Float, AP_Int8, AP_Int16 and AP_Int32. These are strongly typed, so that there is no ambiguity about what a variable "really" is.
The classes behave like the variables they are storing; you can use an AP_Float in most places you would use a regular float; you can add to it, multiply by it, etc. If it has been given an address in EEPROM you can load and save it.
Variables can be given names, and if they are named then they can be looked up. This allows e.g. a GCS or a test tool to find and traffic in variables that it may not explicitly know about.
AP_Var does not attempt to solve the problem of EEPROM address space management.
git-svn-id: https://arducopter.googlecode.com/svn/trunk@1399 f9c3cf11-9bcb-44bc-f272-b75c42450872