Add noreturn attribute to field_not_found(). This function always call
abort() if the field was not found. The compiler may not know about it
and may think some variables are used uninitialized:
../../Tools/Replay/LR_MsgHandler.cpp: In member function ‘void LR_MsgHandler_GPA_Base::update_from_msg_gpa(uint8_t, uint8_t*)’:
../../Tools/Replay/LR_MsgHandler.cpp:212:24: error: ‘sacc’ may be used uninitialized in this function [-Werror=maybe-uninitialized]
gps.setHIL_Accuracy(gps_offset, vdop*0.01f, hacc*0.01f, vacc*0.01f, sacc*0.01f, have_vertical_velocity, sample_ms);
^
Instead of just initializing the variable (which is pointless in this case),
teach the compiler that this function never returns so require_field() works
properly.
Minlure has an onboard compass (HMC5883L) as slave of MPU-6000, but also
allows the use of an external HMC5883L compass, which should be
connected to the lure's I2C port.
We don't need all the comments in the array declaration and we can
inline its declaration in the function call. This makes it easier to
copy it to other places.
That rotation is done because of the "arrow" pointing the sensor direction in
3DR GPS+Compass kit (which isn't natural to the sensor orientation, by the
way). Thus, do that rotation only for external HMC5883L compasses.
That rotation is set for AP_COMPASS_TYPE_HMC5883L, because it's usually
the compass from 3DR GPS+Compass kit, which has an arrow pointing the
"correct" direction. That rotation should be done before rotate_field()
as it represents the "standard" position for the kit.
This patch also makes published values consistent with respect to rotation.
Before this, raw fields used in calibration were published with a
rotation different from the filtered field when _product_id is
AP_COMPASS_TYPE_HMC5883L.
And to the detection probe() method. That way we don't need to use a board
`#ifdef` inside the class code. Additionally, we make raspilot board use it.
Otherwise we would destroy PX4_I2C object after returning from
I2CDeviceManager::get_device(). Since this implementation is very
simple, just make PX4_I2C as an internal class and embed it into the
I2CDevice object.
Instead of depending on the frequency accumulate() is called, use
AverageIntegralFilter with 10 samples. The data obtained by BMP085 is
too noisy with any value of OVERSAMPLING so use twice the number of
samples as currently used. Besides that now we are sure there's always
10 samples used in the average.
When the the variable in which we are saving the current sum is of
integral type we can use a much more optimized apply() method: instead
of looping the entire number of samples adding them up, we always keep
the current sum in a member. It also allows the caller to decide the
type it wants to use to get the average: this may be dictated by another
interface it uses or it may want to avoid the implicit truncate in the
return of apply().
The temperature readings is not subject to white noise so there's no
point in averaging its reading. Moreover since for a normal 50Hz
accumulate() / 10Hz update() it would read temperature only once per
update(), it's pointless to keep averaging and introducing rounding
error.
The temperature doesn't need to be checked as frequent as pressure, too.
The datasheet even suggests on section 3.3, page 10 to enable standard
mode and read the temperature at 1Hz. Here we reduce it to 2Hz
(considering the accumulate() function being called at 50Hz).
If we don't have EOC pin and assuming the accumulate() function is
called at 50Hz (or higher) we would take very few samples to accumulate
before the update is called. That's because since we have to wait 26ms
to get a sample and we calling accumulate() every 20ms, half of the
times it will return without getting anything. So we will
be using 2 or 3 samples only to average.
If we don't have EOC, use OVERSAMPLING=2 which gives us more noise, but
that we can filter out by using measurements to average. When we have
EOC we don't need it because most of the time the conversion will take
less than 20ms: I'm getting 16ms on most of them while bench-testing.
Avoid warnings like:
[2130/2168] Compiling libraries/AP_Math/tests/test_math.cpp
../../libraries/AP_Math/tests/test_math.cpp: In member function ‘virtual void MathTest_IsZero_Test::TestBody()’:
../../libraries/AP_Math/tests/test_math.cpp:73:196: warning: converting ‘false’ to pointer type for argument 1 of ‘char
testing::internal::IsNullLiteralHelper(testing::internal::Secret*)’ [-Wconversion-null]
../../libraries/AP_Math/tests/test_math.cpp:74:199: warning: converting ‘false’ to pointer type for argument 1 of ‘char
testing::internal::IsNullLiteralHelper(testing::internal::Secret*)’ [-Wconversion-null]
Use EXPECT_TRUE() and EXPECT_FALSE() from gtest instead.
The new function can deal with a variable number of function parameters.
Additionally, I renamed the functions to norm(), because this is the
standard name used in several other projects.
When using wrap_180_cd() we are adding a small float (180 * 100) to a
possibly big number. This may lose float precision as illustrated by the
unit test failing:
OUT: ../../libraries/AP_Math/tests/test_math.cpp:195: Failure
OUT: Value of: wrap_180_cd(-3600000000.f)
OUT: Actual: -80
OUT: Expected: 0.f
OUT: Which is: 0
These functions (or variants thereof) now have unit tests:
- is_zero()
- is_equal()
- sq()
- pythagorous()
- constrain()
- wrap_180()
- wrap_360()
Some tests in wrap_180_cd are failing: -180 should be wrapped to 180,
not -180.
The rule to generate mavgen headers need to depend on the rule to check
the submodules, otherwise they can execute in parallel and the
(mavlink) submodule be updated while the headers are generated.
Further to refactor of RC_Channel class which included
adding get_xx set_xx methods, change reads and writes to the public members
to calls to get and set functionsss
old public member(int16_t) get function -> int16_t set function (int16_t)
(expression where c is an object of type RC_Channel)
c.radio_in c.get_radio_in() c.set_radio_in(v)
c.control_in c.get_control_in() c.set_control_in(v)
c.servo_out c.get_servo_out() c.set_servo_out(v)
c.pwm_out c.get_pwm_out() // use existing
c.radio_out c.get_radio_out() c.set_radio_out(v)
c.radio_max c.get_radio_max() c.set_radio_max(v)
c.radio_min c.get_radio_min() c.set_radio_min(v)
c.radio_trim c.get_radio_trim() c.set_radio_trim(v);
c.min_max_configured() // return true if min and max are configured
Because data members of RC_Channels are now private and so cannot be written directly
some overloads are provided in the Plane classes to provide the old functionality
new overload Plane::stick_mix_channel(RC_Channel *channel)
which forwards to the previously existing
void stick_mix_channel(RC_Channel *channel, int16_t &servo_out);
new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const
which forwards to
(uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const;
Rename functions
RC_Channel_aux::set_radio_trim(Aux_servo_function_t function)
to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function)
RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value)
to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value)
Rationale:
RC_Channel is a complicated class, which combines
several functionalities dealing with stick inputs
in pwm and logical units, logical and actual actuator
outputs, unit conversion etc, etc
The intent of this PR is to clarify existing use of
the class. At the basic level it should now be possible
to grep all places where private variable is set by
searching for the set_xx function.
(The wider purpose is to provide a more generic and
logically simpler method of output mixing. This is a small step)
Further to refactor of RC_Channel class which included
adding get_xx set_xx methods, change reads and writes to the public members
to calls to get and set functionsss
old public member(int16_t) get function -> int16_t set function (int16_t)
(expression where c is an object of type RC_Channel)
c.radio_in c.get_radio_in() c.set_radio_in(v)
c.control_in c.get_control_in() c.set_control_in(v)
c.servo_out c.get_servo_out() c.set_servo_out(v)
c.pwm_out c.get_pwm_out() // use existing
c.radio_out c.get_radio_out() c.set_radio_out(v)
c.radio_max c.get_radio_max() c.set_radio_max(v)
c.radio_min c.get_radio_min() c.set_radio_min(v)
c.radio_trim c.get_radio_trim() c.set_radio_trim(v);
c.min_max_configured() // return true if min and max are configured
Because data members of RC_Channels are now private and so cannot be written directly
some overloads are provided in the Plane classes to provide the old functionality
new overload Plane::stick_mix_channel(RC_Channel *channel)
which forwards to the previously existing
void stick_mix_channel(RC_Channel *channel, int16_t &servo_out);
new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const
which forwards to
(uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const;
Rename functions
RC_Channel_aux::set_radio_trim(Aux_servo_function_t function)
to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function)
RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value)
to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value)
Rationale:
RC_Channel is a complicated class, which combines
several functionalities dealing with stick inputs
in pwm and logical units, logical and actual actuator
outputs, unit conversion etc, etc
The intent of this PR is to clarify existing use of
the class. At the basic level it should now be possible
to grep all places where private variable is set by
searching for the set_xx function.
(The wider purpose is to provide a more generic and
logically simpler method of output mixing. This is a small step)
Further to refactor of RC_Channel class which included
adding get_xx set_xx methods, change reads and writes to the public members
to calls to get and set functionsss
old public member(int16_t) get function -> int16_t set function (int16_t)
(expression where c is an object of type RC_Channel)
c.radio_in c.get_radio_in() c.set_radio_in(v)
c.control_in c.get_control_in() c.set_control_in(v)
c.servo_out c.get_servo_out() c.set_servo_out(v)
c.pwm_out c.get_pwm_out() // use existing
c.radio_out c.get_radio_out() c.set_radio_out(v)
c.radio_max c.get_radio_max() c.set_radio_max(v)
c.radio_min c.get_radio_min() c.set_radio_min(v)
c.radio_trim c.get_radio_trim() c.set_radio_trim(v);
c.min_max_configured() // return true if min and max are configured
Because data members of RC_Channels are now private and so cannot be written directly
some overloads are provided in the Plane classes to provide the old functionality
new overload Plane::stick_mix_channel(RC_Channel *channel)
which forwards to the previously existing
void stick_mix_channel(RC_Channel *channel, int16_t &servo_out);
new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const
which forwards to
(uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const;
Rename functions
RC_Channel_aux::set_radio_trim(Aux_servo_function_t function)
to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function)
RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value)
to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value)
Rationale:
RC_Channel is a complicated class, which combines
several functionalities dealing with stick inputs
in pwm and logical units, logical and actual actuator
outputs, unit conversion etc, etc
The intent of this PR is to clarify existing use of
the class. At the basic level it should now be possible
to grep all places where private variable is set by
searching for the set_xx function.
(The wider purpose is to provide a more generic and
logically simpler method of output mixing. This is a small step)
Further to refactor of RC_Channel class which included
adding get_xx set_xx methods, change reads and writes to the public members
to calls to get and set functionsss
old public member(int16_t) get function -> int16_t set function (int16_t)
(expression where c is an object of type RC_Channel)
c.radio_in c.get_radio_in() c.set_radio_in(v)
c.control_in c.get_control_in() c.set_control_in(v)
c.servo_out c.get_servo_out() c.set_servo_out(v)
c.pwm_out c.get_pwm_out() // use existing
c.radio_out c.get_radio_out() c.set_radio_out(v)
c.radio_max c.get_radio_max() c.set_radio_max(v)
c.radio_min c.get_radio_min() c.set_radio_min(v)
c.radio_trim c.get_radio_trim() c.set_radio_trim(v);
c.min_max_configured() // return true if min and max are configured
Because data members of RC_Channels are now private and so cannot be written directly
some overloads are provided in the Plane classes to provide the old functionality
new overload Plane::stick_mix_channel(RC_Channel *channel)
which forwards to the previously existing
void stick_mix_channel(RC_Channel *channel, int16_t &servo_out);
new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const
which forwards to
(uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const;
Rename functions
RC_Channel_aux::set_radio_trim(Aux_servo_function_t function)
to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function)
RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value)
to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value)
Rationale:
RC_Channel is a complicated class, which combines
several functionalities dealing with stick inputs
in pwm and logical units, logical and actual actuator
outputs, unit conversion etc, etc
The intent of this PR is to clarify existing use of
the class. At the basic level it should now be possible
to grep all places where private variable is set by
searching for the set_xx function.
(The wider purpose is to provide a more generic and
logically simpler method of output mixing. This is a small step)
Further to refactor of RC_Channel class which included
adding get_xx set_xx methods, change reads and writes to the public members
to calls to get and set functionsss
old public member(int16_t) get function -> int16_t set function (int16_t)
(expression where c is an object of type RC_Channel)
c.radio_in c.get_radio_in() c.set_radio_in(v)
c.control_in c.get_control_in() c.set_control_in(v)
c.servo_out c.get_servo_out() c.set_servo_out(v)
c.pwm_out c.get_pwm_out() // use existing
c.radio_out c.get_radio_out() c.set_radio_out(v)
c.radio_max c.get_radio_max() c.set_radio_max(v)
c.radio_min c.get_radio_min() c.set_radio_min(v)
c.radio_trim c.get_radio_trim() c.set_radio_trim(v);
c.min_max_configured() // return true if min and max are configured
Because data members of RC_Channels are now private and so cannot be written directly
some overloads are provided in the Plane classes to provide the old functionality
new overload Plane::stick_mix_channel(RC_Channel *channel)
which forwards to the previously existing
void stick_mix_channel(RC_Channel *channel, int16_t &servo_out);
new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const
which forwards to
(uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const;
Rename functions
RC_Channel_aux::set_radio_trim(Aux_servo_function_t function)
to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function)
RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value)
to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value)
Rationale:
RC_Channel is a complicated class, which combines
several functionalities dealing with stick inputs
in pwm and logical units, logical and actual actuator
outputs, unit conversion etc, etc
The intent of this PR is to clarify existing use of
the class. At the basic level it should now be possible
to grep all places where private variable is set by
searching for the set_xx function.
(The wider purpose is to provide a more generic and
logically simpler method of output mixing. This is a small step)