this moves to using a 1p filter on the high rate data, followed by
averaging down to 1kHz then a 2p filter to apply configured cutoff
frequency.
It also fixes the FIFO reset to not cause data corruption. We need to
disable all FIFO channels before doing the reset, and wait for the
FIFO to stop in the sensor.
Finally it moves sampling of the MPU6000 and MPU9250 into the main
thread. That significantly improves scheduling performance as we no
longer get long FIFO SPI transfers happening during other tasks. All
transfers happen at the start of the fast loop. That makes timing much
more predictable.
Thanks to Leonard and Paul for help with this design!
When blocking forever there's no reason to call panic later since it
will never going to be reached. This reduces binary size in a few bytes
since the message isn't required anymore.
When the accel calibration fails leave the previous values saved but set them to defaults (scale default is ones, not zeros) and notify the GCS
This fixes an arithmetic exception when doing a second accel cal after the first one failed
this allows enable/disable of fast sampling per IMU, making
experimentation easier.
It also fixes the fast sampling to always average over 8 samples, and
fixes the 9250 to use the correct accumulator when not doing fast
sampling
Two cases of what seems to be FIFO alignment errors have been seen on
a Pixracer-beta board with a ICM-20608. At a cost of 2 extra bytes per
transfer we can catch these by looking for sudden temperature changes
caused by bad data in the temperature registers.
When registering accel and gyro we use the upper 16bits of the id to
store the driver version. When changing the driver behavior in
non-compatible ways, changing this version will trigger a request for
calibration.
This allows each sensor to be uniquely identified in the system by using
either the index inside the backend or for those that use the Device
interface, to use the bus type, location, and device id.
We leave 16-bit for each sensor to be able to change its own
identification in future, which allows them to be changed in an
incompatible manner forcing a re-calibration.
When we are initializing the gyro and then saving the calibration we are
also saving the calibration values for the accelerometers. Right now
this is non-problematic, but we want to check that the ID of the
accelerometer corresponds to the ID of the sensor detected. If we also
save accel calibrations we would actually override the ID of the
accelerometer.
Rename the method to _save_gyro_calibration() and save only on gyro
values.
We only leave the parameter there for backward-compatibility. However
product id on the inertial sensor is not much useful since it's only
kept for the first instance.
A better implementation per-gyro and per-accel is needed in order to
avoid problems with sensors taking the offsets configured for another
sensor.
By opening with O_CLOEXEC we make sure we don't leak the file descriptor
when we are exec'ing or calling out subprograms. Right now we currently
don't do it so there's no harm, but it's good practice in Linux to have
it.
RC_Channel: To nullptr from NULL.
AC_Fence: To nullptr from NULL.
AC_Avoidance: To nullptr from NULL.
AC_PrecLand: To nullptr from NULL.
DataFlash: To nullptr from NULL.
SITL: To nullptr from NULL.
GCS_MAVLink: To nullptr from NULL.
DataFlash: To nullptr from NULL.
AP_Compass: To nullptr from NULL.
Global: To nullptr from NULL.
Global: To nullptr from NULL.
Notify users of the potential for velocity noise when using larger offset values..
Specific advice in terms of values has not been provided because it is highly dependent on Gyro noise levels.
We currently check examples are buildable with waf which doesn't need
the libraries to be specified in a make.inc file. Having the makefiles
there is misleading since people try to build and realize the build is
broken.
Some notes:
- The only place that made sense to use
suspend_timer_procs()/resume_timer_procs() calls were where we registered
the timer process. Now there's no need for that anymore. Remove those calls
from other place in the source too.
- There's no need to acquire the device lock now that we are running as a
periodic callback.
- Use "INS_" prefix for the name in order to limit the scope for that macro.
- Don't define it in the code and check if it is defined instead of checking
the value. With that, there's no need to touch the code for enabling debug,
only a reconfiguration is necessary (e.g., `CXXFLAGS='-DINS_TIMING_DEBUG' waf
configure ...`).
The reason of defining BMI160_MAX_FIFO_SAMPLES as 8 can be found on the
following histogram of the number of samples in the FIFO on each read while
performing the accelerometer calibration process:
Samples Count Freq Acc. Freq
------------------------------
1 3842 0.1201 0.120111
2 13172 0.4118 0.531904
3 9065 0.2834 0.815300
4 2710 0.0847 0.900022
5 2231 0.0697 0.969769
6 816 0.0255 0.995279
7 137 0.0043 0.999562
8 13 0.0004 0.999969
13 1 0.0000 1.000000