This allows us to re-use I2CDevice from I2CDriver while the drivers are
converted. We create a fake device with addr = 0 for each I2CDriver but
we only use the register/unregister logic. The transfer logic still uses
the methods from I2CDriver in order to use the right address.
Now we can interoperate I2CDevice drivers with the ones base in
I2CDriver since they are going to use the same semaphore and bus.
The I2CDriver constructors were changed to re-use the logic in I2CDevice
(it uses a number rather than an string) and the semaphore doesn't live
outside anymore, its embedded in the fake I2CDevice, as well as the
bus's file descritor.
This is a similar function to what we have in I2CDriver, but it can
receive a nullptr to recv or send. It will create 2 i2c_msg structs to
send and receive data to/from the I2C slave.
These are very similar to their counterparts in I2CDriver. The changes
were:
- Don't use fixed buffer with PATH_MAX length: allocate the string
- Change the interface to use std::vector so we can simplify the
implementation
This is very similar to std::unique_ptr, but doesn't require including
the <memory> header which pulls lots of c++ headers and cause problems
with nuttx headers. It's header-only. It contains an explanation on what
it solves, how to use and unit tests.
Add a cstddef header to allow using std::nullptr_t with those toolchains
that don't provide it. The idea is to make these platforms to use our
wrapper header (see https://gcc.gnu.org/onlinedocs/cpp/Wrapper-Headers.html)
and then we add the missing bits to the header.
Cast to the original type to use get function.
Still a hack but better than casting a pointer to an object which
memory mapping we are not supposed to know
Use pthread's barrier so we don't keep waking up threads with possibly
higher priority during initialization phase.
This also synchronizes all of them to a single point. With the previous
approach it was possible (but unlikely) that a thread hadn't reach the
synchronization point when main thread signalize "system initialized".
5hz update warnings are only valid if you have a fix, without a fix it adds load
to the GPS without any benefit. Our _5hz time messages are depenend upon GPS fix
time which isn't available yet
// @Description: When zero, the flare sink rate (TECS_LAND_SINK) is a fixed sink demand. With this enabled the flare sinkrate will increase/decrease the flare sink demand as you get further beyond the LAND waypoint. Has no effect before the waypoint. This value is added to TECS_LAND_SINK proportional to distance traveled after wp. With an increasing sink rate you can still land in a given distance if you're traveling too fast and cruise passed the land point. A positive value will force the plane to land sooner proportional to distance passed land point. A negative number will tell the plane to slowly climb allowing for a pitched-up stall landing. Recommend 0.2 as initial value.