very strict check that all axis are not vibrating much at all
new param: INS_STILL_THRESH used to be a vibration threshold for different platforms
// @Description: Threshold to tolerate vibration to determine if vehicle is motionless. This depends on the frame type and if there is a constant vibration due to motors before launch or after landing. Total motionless is about 0.05. Suggested values: Planes/rover use 0.1, multirotors use 1, tradHeli uses 5
This commit changes the way libraries headers are included in source files:
- If the header is in the same directory the source belongs to, so the
notation '#include ""' is used with the path relative to the directory
containing the source.
- If the header is outside the directory containing the source, then we use
the notation '#include <>' with the path relative to libraries folder.
Some of the advantages of such approach:
- Only one search path for libraries headers.
- OSs like Windows may have a better lookup time.
Different detect() function might need different arguments and passing a
pointer to function here is cumbersome. For example, it forces to have a
method like "detect_i2c2" rather than allowing hal.i2c2 to be passed as
parameter.
This adds the backend driver for LSM9DS0. This implementation is based on the
legacy driver coded by Víctor Mayoral Vilches (under folder LSM9DS0) and makes
some necessary adaptations and fixes in order to work properly. The legacy
driver folder was removed.
The calibration on LSM9DS0 was giving offsets between 4.0 and 4.2 on x-axis and
around 3.6 on y-axis. It turned out that those offsets were actually right.
The maximum absolute values of calibration offset should be a sensor
characteristic rather than a constant value for all sensors.
The constant value previously used (3.5 m/s/s for all axes) is set here as a
default maximum absolute calibration offset for every instance to keep it
working.
during 3D accel cal it is possible to get data which passes the sphere
fit but which has very poor coverage and does not provide sufficient
data for a good result. This checks that each axis covers a range of
at least 12 m/s/s in body frame
this allows us to detect if accel calibration was done in sensor frame
or not. If it was done in sensor frame then the accel calibration is
independent of AHRS_ORIENTATION, which makes it easier to move a board
to a new airframe without having to recalibrate.
this will be used in plane to make AHRS SYS_STATUS unhealthy if a user
tries to fly with EKF enabled without a full 3D accel cal.
Note that it doesn't rely on using AP_Param load() to detect that a
value has been set, as some users are first doing a 3D cal then later
doing a 1D cal. In that case load() was returning true and would give
a false positive
This converts the MPU6000 driver to a frontend/backend structure, and
disables all other drivers. They will be progressively re-enabled as
each is converted