The airspeed observation buffer was only being checked when new data arrived instead of every frame which introduced some timing jitter. The buffer is now checked every filer update step.
The duplication and inconsistent naming of booleans used to indicate availability f data has been fixed.
These changes were pair coded an tested by Siddharth Purohit and Paul Riseborough
Fix indexing errors
Move buffer code into a separate file
Split observer and IMU/output buffers and remove duplicate sample time
Optimise observation buffer search
Reduce maximum allowed fusion age to 100 msec
This revised threshold value is still double the maximum that has been observed in flight logs so far with healthy sensors
The previous value was too slow to switch for sudden IMU gyro faults
We can afford an ocasional false trigger becasue the front end will only select another instance if it is healthy and has lower errors
The ad-hoc scaling of error growth has been replaced with a consistent method that uses the main nav filters published vertical velocity uncertainty and the terrain gradient assumption.
GPS height has been added as a measurement option along with range finder and baro
Selection of the height measurement source has been moved into a separate function
Each height source is assigned its own measurement noise
If GPS or baro alt is not able to be used, it reverts to baro
When baro is not being used, an offset is continually calculated which enables a switch to baro without a height step.
The copter method was being used for plane and the plane method was not being run due to the change in flight status not being detected.
The plane reset method did not trigger if the EKF had already dragged the velocity states along with the GPS or could align to an incorrect heading.
The method has been reworked so that it resets to the GPS course, but only if there are inconsistent angles and large innovations.
To stop a failed magnetometer causing a loss of yaw reference later in flight, if all available sensors have been tried in flight and timed out, then no further magnetoemter data will be used
Down-sample the IMU and output observer state data to 100Hz for storage in the buffer.
This reduces storage requirements for Copter by 75% or 6KB
It does not affect memory required by plane which already uses short buffers due to its 50Hz execution rate.
This means that the EKF filter operations operate at a maximum rate of 100Hz.
The output observer continues to operate at 400Hz and coning and sculling corrections are applied during the down-sampling so there is no loss of accuracy.
Large magnetometer innovations on the ground could be caused by factors that will disappear when flying, eg:
a) Bad initial gyro bias
b) External magnetic field disturbances (adjacent metal structures, placement of hatches with magnets, etc)
To avoid unnecessary switches, we inhibit switching until off-ground and when sufficient time has lapsed from power on to learn gyro bias offsets.
If the magnetometer fails innovation consistency checks for too long (currently 10 sec), then the next available sensor approved for yaw measurement will be used.
The original design intent was to require all axes to pass because severe errors are rarely constrained to a single axis.
This was not achieved with the previous implementation.
These changes move the innovation consistency checks for all three axes to the top before any axes are fused.
Unnecessary performance timers have been removed.
This was problematic to implement with magnetometer switching. It is likely that slow magnetometer learning can still be performed externally (eg plane) but this will need to be monitored to see if it causes issues.
The setting of the EKF origin and the entry into GPS aiding mode have been separated to make the logic clear.
The order of operations has been changed to ensure that when a reset to GPS is performed, a valid GPS measurement is available in the buffer
Declaration of GPS availability is not made unless the GPS data has been entered into the buffer
Only applied to interfaces required for data logging.
If an invalid instance is requested, the data for the primary instance is returned. This allows the primary data to be returned by calling with a -1 instance value.
Apply filtering to baro innovation check and and don't apply innovation checks once aiding has commenced because GPS and baro disturbances on the ground and during launch could generate a false positive