- Wrapped the definition of `serial_instance` with preprocessor directives to ensure it is only defined when necessary.
- This resolves the compile error caused by the unused variable when no features requiring `serial_instance` are enabled.
control copter floor fence with autoenable
autoenable floor fence with a margin
check for manual recovery only after having checked the fences
make auto-disabling for minimum altitude fence an option
output message when fence floor auto-enabled
re-use fence floor auto-enable/disable from plane
auto-disable on landing
do not update enable parameter when controlling through mavlink
make sure get_enabled_fences() actually returns enabled fences.
make current fences enabled internal state rather than persistent
implement auto options correctly and on copter
add fence names utility
use ExpandingString for constructing fence names
correctly check whether fences are enabled or not and disable min alt for landing in all auto modes
add enable_configured() for use by mavlink and rc
add events for all fence types
make sure that auto fences are no longer candidates after manual updates
add fence debug
make sure rc switch is the ultimate authority on fences
reset auto mask when enabling or disabling fencing
ensure auto-enable on arming works as intended
simplify printing fence notices
reset autofences when auot-enablement is changed
When stall prevention is enabled we were scaling from the aircraft's
minimum flight speed. However this is normally already picked as being
above the stall speed, and for a variety of reasons we may want to pin
the aircraft at a higher minimum speed. But if the aircraft was
commanded to fly to close to that minimum speed as soon as it banked for
a pattern it would command a increase in speed to keep it away from
stalling. However if your minimum speed is far from stalling this
increase was incorrect. To make it worse what this actually results in
happening is an aircraft diving for more speed (over 10 m/s on some
aircraft) as well as descending to gain that speed resulting in over 200
foot deviations in altitude control.
Only create the binding object (singleton metatable/userdata or C
function reference) once the user first references a particular
singleton or userdata creation function. Once created, the object is
stored into the script's environment so it doesn't get recreated on the
next reference and there isn't any further overhead. The userdatas are
no longer shared between scripts which imposes a slight memory penalty
for multiple scripts using the same singleton but this avoids an
additional lookup time cost.
Userdata and ap_objects aren't eligible for this optimization as the C++
code might want a particular metatable at any time.
Saves ~9.3K Lua heap.