Fixes for Smooth Loiter

This commit is contained in:
Jason Short 2011-12-28 22:51:25 -08:00
parent 4f60fa412c
commit fa49aa5eec
1 changed files with 54 additions and 104 deletions

View File

@ -41,26 +41,26 @@ static void calc_XY_velocity(){
static int32_t last_longitude = 0; static int32_t last_longitude = 0;
static int32_t last_latutude = 0; static int32_t last_latutude = 0;
// y_GPS_speed positve = Up
// x_GPS_speed positve = Right
if(g_gps->ground_speed > 150){ if(g_gps->ground_speed > 150){
// Derive X/Y speed from GPS // Derive X/Y speed from GPS
// this is far more accurate when traveling about 1.5m/s // this is far more accurate when traveling about 1.5m/s
float temp = g_gps->ground_course * RADX100; float temp = g_gps->ground_course * RADX100;
x_GPS_speed = sin(temp) * (float)g_gps->ground_speed; x_GPS_speed = sin(temp) * (float)g_gps->ground_speed;
y_GPS_speed = cos(temp) * (float)g_gps->ground_speed; y_GPS_speed = cos(temp) * (float)g_gps->ground_speed;
}else{ }else{
// this speed is ~ in cm because we are using 10^7 numbers from GPS // this speed is ~ in cm because we are using 10^7 numbers from GPS
int16_t x_diff = (last_longitude - g_gps->longitude); float tmp = 1.0/dTnav;
int16_t y_diff = (last_latutude - g_gps->latitude); //int8_t tmp = 5;
int16_t x_diff = (g_gps->longitude - last_longitude) * tmp;
int16_t y_diff = (g_gps->latitude - last_latutude) * tmp;
if(x_diff == 0) // filter
x_GPS_speed = x_GPS_speed /2; x_GPS_speed = (x_GPS_speed * 3 + x_diff) / 4;
else y_GPS_speed = (y_GPS_speed * 3 + y_diff) / 4;
x_GPS_speed = x_diff;
if(y_diff == 0)
y_GPS_speed = y_GPS_speed /2;
else
y_GPS_speed = y_diff;
} }
last_longitude = g_gps->longitude; last_longitude = g_gps->longitude;
@ -69,7 +69,6 @@ static void calc_XY_velocity(){
//Serial.printf("GS: %d \tx:%d \ty:%d\n", g_gps->ground_speed, x_GPS_speed, y_GPS_speed); //Serial.printf("GS: %d \tx:%d \ty:%d\n", g_gps->ground_speed, x_GPS_speed, y_GPS_speed);
} }
// long_error, lat_error
static void calc_location_error(struct Location *next_loc) static void calc_location_error(struct Location *next_loc)
{ {
/* /*
@ -82,11 +81,11 @@ static void calc_location_error(struct Location *next_loc)
pitch_max = 22° (2200) pitch_max = 22° (2200)
*/ */
// X ROLL // X Error
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 Go East
// Y PITCH // Y Error
lat_error = next_loc->lat - current_loc.lat; // 0 - 500 = -500 pitch NORTH lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North
} }
#define NAV_ERR_MAX 800 #define NAV_ERR_MAX 800
@ -112,53 +111,55 @@ static void calc_loiter(int x_error, int y_error)
nav_lon = constrain(nav_lon, -3500, 3500); nav_lon = constrain(nav_lon, -3500, 3500);
nav_lon += x_iterm; nav_lon += x_iterm;
/*Serial.printf("WP_dist: %d, loiter x_actual_speed %d,\tx_rate_error: %d,\tnav_lon: %d,\ty_actual_speed %d,\ty_rate_error: %d,\tnav_lat: %d,\n", /*
wp_distance, int8_t ttt = 1.0/dTnav;
x_actual_speed, int16_t t2 = g.pi_nav_lat.get_integrator();
x_rate_error, // 1 2 3 4 5 6 7 8 9 10 11
nav_lon, Serial.printf("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d\n",
y_actual_speed, wp_distance, //1
y_rate_error, ttt, //2
nav_lat); y_error, //3
y_GPS_speed, //4
y_GPS_speed2, //5
y_actual_speed, //6
y_target_speed, //7
y_rate_error, //8
nav_lat, //9
y_iterm, //10
t2); //11
//*/
/*
int16_t t1 = g.pi_nav_lon.get_integrator(); // X
Serial.printf("%d, %1.4f, %d, %d, %d, %d, %d, %d, %d, %d\n",
wp_distance, //1
dTnav, //2
x_error, //3
x_GPS_speed, //4
x_actual_speed, //5
x_target_speed, //6
x_rate_error, //7
nav_lat, //8
x_iterm, //9
t1); //10
//*/ //*/
} }
//wp_distance, y_error, y_GPS_speed, y_GPS_speed2, y_actual_speed, y_target_speed, y_rate_error, nav_lat, y_iterm, t2
#define ERR_GAIN .01 #define ERR_GAIN .01
// called at 50hz // called at 50hz
static void estimate_velocity() static void estimate_velocity()
{ {
// for now we assume copter is pointing due north
// use roll to calculate the x velocity
//float scale = sin((float)nav_lon * RADX100)); // guess our X location based tilt of copter
// we need to extimate velocity when below GPS threshold of 1.5m/s // we need to extimate velocity when below GPS threshold of 1.5m/s
if(g_gps->ground_speed < 150){ if(g_gps->ground_speed < 150){
// calc the cos of the error to tell how fast we are moving towards the target in cm // some smoothing to prevent bumpy rides
//if(g.optflow_enabled && current_loc.alt < 500){ x_actual_speed = (x_actual_speed * 15 + x_GPS_speed) / 16;
// optflow wont be enabled on 1280's y_actual_speed = (y_actual_speed * 15 + y_GPS_speed) / 16;
// #ifdef OPTFLOW_ENABLED
//x_actual_speed = optflow.vlon * 10;
//y_actual_speed = optflow.vlat * 10;
// #endif
//}else{
// this area will have future IMU based velocity navigation,
// ignore these sketches.
// need to take into account the wind based on loiter's iterms
// x_actual_speed += thrust * sin_roll_y; // thrust is a guess, needs to be calibrated whith CH6
// x_actual_speed -= ERR_GAIN * (float)(x_actual_speed - x_GPS_speed); // error correction
// y_actual_speed += thrust * sin_pitch_y; // thrust is a guess, needs to be calibrated whith CH6
// y_actual_speed -= ERR_GAIN * (float)(y_actual_speed - y_GPS_speed); // error correction
//}
// for now
// light filter of output
x_actual_speed = (x_actual_speed * 3 + x_GPS_speed) / 4;
y_actual_speed = (y_actual_speed * 3 + y_GPS_speed) / 4;
}else{ }else{
// less smoothing needed since the GPS already filters
x_actual_speed = (x_actual_speed * 3 + x_GPS_speed) / 4; x_actual_speed = (x_actual_speed * 3 + x_GPS_speed) / 4;
y_actual_speed = (y_actual_speed * 3 + y_GPS_speed) / 4; y_actual_speed = (y_actual_speed * 3 + y_GPS_speed) / 4;
} }
@ -299,25 +300,6 @@ static int32_t get_altitude_error()
return next_WP.alt - current_loc.alt; return next_WP.alt - current_loc.alt;
} }
/*
//static int get_loiter_angle()
{
float power;
int angle;
if(wp_distance <= g.loiter_radius){
power = float(wp_distance) / float(g.loiter_radius);
power = constrain(power, 0.5, 1);
angle = 90.0 * (2.0 + power);
}else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){
power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE);
power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1);
angle = power * 90;
}
return angle;
}*/
static int32_t wrap_360(int32_t error) static int32_t wrap_360(int32_t error)
{ {
if (error > 36000) error -= 36000; if (error > 36000) error -= 36000;
@ -332,38 +314,6 @@ static int32_t wrap_180(int32_t error)
return error; return error;
} }
/*
//static int32_t get_crosstrack_correction(void)
{
// Crosstrack Error
// ----------------
if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following
// Meters we are off track line
float error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance;
// take meters * 100 to get adjustment to nav_bearing
int32_t _crosstrack_correction = g.pi_crosstrack.get_pi(error, dTnav) * 100;
// constrain answer to 30° to avoid overshoot
return constrain(_crosstrack_correction, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get());
}
return 0;
}
*/
/*
//static int32_t cross_track_test()
{
int32_t temp = wrap_180(target_bearing - crosstrack_bearing);
return abs(temp);
}
*/
/*
//static void reset_crosstrack()
{
crosstrack_bearing = get_bearing(&current_loc, &next_WP); // Used for track following
}
*/
/* /*
//static int32_t get_altitude_above_home(void) //static int32_t get_altitude_above_home(void)
{ {
@ -386,7 +336,7 @@ static int32_t get_distance(struct Location *loc1, struct Location *loc2)
return sqrt(sq(dlat) + sq(dlong)) * .01113195; return sqrt(sq(dlat) + sq(dlong)) * .01113195;
} }
/* /*
static int32_t get_alt_distance(struct Location *loc1, struct Location *loc2) //static int32_t get_alt_distance(struct Location *loc1, struct Location *loc2)
{ {
return abs(loc1->alt - loc2->alt); return abs(loc1->alt - loc2->alt);
} }