uncrustify ArduCopter/Attitude.pde

This commit is contained in:
uncrustify 2012-08-21 19:19:50 -07:00 committed by Pat Hickey
parent 2438cd32fc
commit f783ace0de

View File

@ -135,77 +135,77 @@ get_acro_yaw(int32_t target_rate)
}
/*
static int16_t
get_acro_yaw2(int32_t target_rate)
{
int32_t p,i,d; // used to capture pid values for logging
int32_t rate_error; // current yaw rate error
int32_t current_rate; // current real yaw rate
int32_t decel_boost; // gain scheduling if we are overshooting
int32_t output; // output to rate controller
target_rate = g.pi_stabilize_yaw.get_p(target_rate);
current_rate = omega.z * DEGX100;
rate_error = target_rate - current_rate;
//Gain Scheduling:
//If the yaw input is to the right, but stick is moving to the middle
//and actual rate is greater than the target rate then we are
//going to overshoot the yaw target to the left side, so we should
//strengthen the yaw output to slow down the yaw!
#if (FRAME_CONFIG == HELI_FRAME || FRAME_CONFIG == TRI_FRAME)
static int32_t last_target_rate = 0; // last iteration's target rate
if ( target_rate > 0 && last_target_rate > target_rate && rate_error < 0 ){
decel_boost = 1;
} else if (target_rate < 0 && last_target_rate < target_rate && rate_error > 0 ){
decel_boost = 1;
} else if (target_rate == 0 && labs(current_rate) > 1000){
decel_boost = 1;
} else {
decel_boost = 0;
}
last_target_rate = target_rate;
#else
decel_boost = 0;
#endif
// separately calculate p, i, d values for logging
// we will use d=0, and hold i at it's last value
// since manual inputs are never steady state
p = g.pid_rate_yaw.get_p(rate_error);
i = g.pid_rate_yaw.get_integrator();
d = 0;
if (decel_boost){
p *= 2;
}
output = p+i+d;
// output control:
// constrain output
output = constrain(output, -4500, 4500);
#if LOGGING_ENABLED == ENABLED
static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
// log output if PID loggins is on and we are tuning the yaw
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) {
log_counter++;
if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
log_counter = 0;
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value);
}
}
#endif
return output;
}
* static int16_t
* get_acro_yaw2(int32_t target_rate)
* {
* int32_t p,i,d; // used to capture pid values for logging
* int32_t rate_error; // current yaw rate error
* int32_t current_rate; // current real yaw rate
* int32_t decel_boost; // gain scheduling if we are overshooting
* int32_t output; // output to rate controller
*
* target_rate = g.pi_stabilize_yaw.get_p(target_rate);
* current_rate = omega.z * DEGX100;
* rate_error = target_rate - current_rate;
*
* //Gain Scheduling:
* //If the yaw input is to the right, but stick is moving to the middle
* //and actual rate is greater than the target rate then we are
* //going to overshoot the yaw target to the left side, so we should
* //strengthen the yaw output to slow down the yaw!
*
* #if (FRAME_CONFIG == HELI_FRAME || FRAME_CONFIG == TRI_FRAME)
* static int32_t last_target_rate = 0; // last iteration's target rate
* if ( target_rate > 0 && last_target_rate > target_rate && rate_error < 0 ){
* decel_boost = 1;
* } else if (target_rate < 0 && last_target_rate < target_rate && rate_error > 0 ){
* decel_boost = 1;
* } else if (target_rate == 0 && labs(current_rate) > 1000){
* decel_boost = 1;
* } else {
* decel_boost = 0;
* }
*
* last_target_rate = target_rate;
*
* #else
*
* decel_boost = 0;
*
* #endif
*
* // separately calculate p, i, d values for logging
* // we will use d=0, and hold i at it's last value
* // since manual inputs are never steady state
*
* p = g.pid_rate_yaw.get_p(rate_error);
* i = g.pid_rate_yaw.get_integrator();
* d = 0;
*
* if (decel_boost){
* p *= 2;
* }
*
* output = p+i+d;
*
* // output control:
* // constrain output
* output = constrain(output, -4500, 4500);
*
* #if LOGGING_ENABLED == ENABLED
* static int8_t log_counter = 0; // used to slow down logging of PID values to dataflash
* // log output if PID loggins is on and we are tuning the yaw
* if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_KP || g.radio_tuning == CH6_YAW_RATE_KP) ) {
* log_counter++;
* if( log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10
* log_counter = 0;
* Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value);
* }
* }
* #endif
*
* return output;
* }
*/
static int16_t
@ -408,7 +408,7 @@ static void reset_nav_params(void)
}
/*
reset all I integrators
* reset all I integrators
*/
static void reset_I_all(void)
{
@ -469,33 +469,33 @@ static void reset_stability_I(void)
/*************************************************************
throttle control
* throttle control
****************************************************************/
/* Depricated
static long
//get_nav_yaw_offset(int yaw_input, int reset)
{
int32_t _yaw;
if(reset == 0){
// we are on the ground
return ahrs.yaw_sensor;
}else{
// re-define nav_yaw if we have stick input
if(yaw_input != 0){
// set nav_yaw + or - the current location
_yaw = yaw_input + ahrs.yaw_sensor;
// we need to wrap our value so we can be 0 to 360 (*100)
return wrap_360(_yaw);
}else{
// no stick input, lets not change nav_yaw
return nav_yaw;
}
}
}
*
* static long
* //get_nav_yaw_offset(int yaw_input, int reset)
* {
* int32_t _yaw;
*
* if(reset == 0){
* // we are on the ground
* return ahrs.yaw_sensor;
*
* }else{
* // re-define nav_yaw if we have stick input
* if(yaw_input != 0){
* // set nav_yaw + or - the current location
* _yaw = yaw_input + ahrs.yaw_sensor;
* // we need to wrap our value so we can be 0 to 360 (*100)
* return wrap_360(_yaw);
* }else{
* // no stick input, lets not change nav_yaw
* return nav_yaw;
* }
* }
* }
*/
static int16_t get_angle_boost(int16_t value)