AP_HAL: add Jain's estimator

notch tuning using FFT averaging
allocate scratch space for peak finding
return all detected peaks to caller
This commit is contained in:
Andy Piper 2022-03-05 21:00:11 +01:00 committed by Andrew Tridgell
parent a7b3a5713d
commit f57ac4787d
3 changed files with 128 additions and 5 deletions

View File

@ -18,6 +18,9 @@
#include <AP_Math/AP_Math.h> #include <AP_Math/AP_Math.h>
#include "AP_HAL.h" #include "AP_HAL.h"
#include "DSP.h" #include "DSP.h"
#ifndef HAL_NO_UARTDRIVER
#include <GCS_MAVLink/GCS.h>
#endif
#if HAL_WITH_DSP #if HAL_WITH_DSP
@ -42,7 +45,7 @@ DSP::FFTWindowState::FFTWindowState(uint16_t window_size, uint16_t sample_rate)
if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) { if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) {
hal.util->free_type(_freq_bins, sizeof(float) * (_window_size), DSP_MEM_REGION); hal.util->free_type(_freq_bins, sizeof(float) * (_window_size), DSP_MEM_REGION);
hal.util->free_type(_derivative_freq_bins, sizeof(float) * (_bin_count), DSP_MEM_REGION); hal.util->free_type(_derivative_freq_bins, sizeof(float) * (_bin_count + 1), DSP_MEM_REGION);
hal.util->free_type(_hanning_window, sizeof(float) * (_window_size), DSP_MEM_REGION); hal.util->free_type(_hanning_window, sizeof(float) * (_window_size), DSP_MEM_REGION);
hal.util->free_type(_rfft_data, sizeof(float) * (_window_size + 2), DSP_MEM_REGION); hal.util->free_type(_rfft_data, sizeof(float) * (_window_size + 2), DSP_MEM_REGION);
@ -59,7 +62,7 @@ DSP::FFTWindowState::FFTWindowState(uint16_t window_size, uint16_t sample_rate)
_hanning_window[i] = (0.5f - 0.5f * cosf(2.0f * M_PI * i / ((float)window_size - 1))); _hanning_window[i] = (0.5f - 0.5f * cosf(2.0f * M_PI * i / ((float)window_size - 1)));
_window_scale += _hanning_window[i]; _window_scale += _hanning_window[i];
} }
// Calculate the inverse of the Effective Noise Bandwidth // Calculate the inverse of the Effective Noise Bandwidth - equation 24
_window_scale = 2.0f / sq(_window_scale); _window_scale = 2.0f / sq(_window_scale);
} }
@ -67,12 +70,14 @@ DSP::FFTWindowState::~FFTWindowState()
{ {
hal.util->free_type(_freq_bins, sizeof(float) * (_window_size), DSP_MEM_REGION); hal.util->free_type(_freq_bins, sizeof(float) * (_window_size), DSP_MEM_REGION);
_freq_bins = nullptr; _freq_bins = nullptr;
hal.util->free_type(_derivative_freq_bins, sizeof(float) * (_bin_count), DSP_MEM_REGION); hal.util->free_type(_derivative_freq_bins, sizeof(float) * (_bin_count + 1), DSP_MEM_REGION);
_derivative_freq_bins = nullptr; _derivative_freq_bins = nullptr;
hal.util->free_type(_hanning_window, sizeof(float) * (_window_size), DSP_MEM_REGION); hal.util->free_type(_hanning_window, sizeof(float) * (_window_size), DSP_MEM_REGION);
_hanning_window = nullptr; _hanning_window = nullptr;
hal.util->free_type(_rfft_data, sizeof(float) * (_window_size + 2), DSP_MEM_REGION); hal.util->free_type(_rfft_data, sizeof(float) * (_window_size + 2), DSP_MEM_REGION);
_rfft_data = nullptr; _rfft_data = nullptr;
hal.util->free_type(_avg_freq_bins, sizeof(float) * (_window_size), DSP_MEM_REGION);
_avg_freq_bins = nullptr;
} }
// step 3: find the magnitudes of the complex data // step 3: find the magnitudes of the complex data
@ -104,6 +109,12 @@ void DSP::step_cmplx_mag(FFTWindowState* fft, uint16_t start_bin, uint16_t end_b
// scale the power to account for the input window // scale the power to account for the input window
vector_scale_float(fft->_freq_bins, fft->_window_scale, fft->_freq_bins, fft->_bin_count); vector_scale_float(fft->_freq_bins, fft->_window_scale, fft->_freq_bins, fft->_bin_count);
// average the FFT data
if (fft->_averaging) {
vector_add_float(fft->_avg_freq_bins, fft->_freq_bins, fft->_avg_freq_bins, fft->_bin_count);
fft->_averaging_samples++;
}
} }
// calculate the noise width of a peak based on the input parameters // calculate the noise width of a peak based on the input parameters
@ -209,6 +220,100 @@ float DSP::tau(const float x) const
return (0.25f * p1 - TAU_FACTOR * p2); return (0.25f * p1 - TAU_FACTOR * p2);
} }
// from https://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak/
// Works on magnitudes only, which is useful when using averaged data
float DSP::calculate_jains_estimator(const FFTWindowState* fft, const float* real_fft, uint16_t k_max)
{
if (k_max <= 1 || k_max >= fft->_bin_count) {
return 0.0f;
}
float y1 = real_fft[k_max-1];
float y2 = real_fft[k_max];
float y3 = real_fft[k_max+1];
float d = 0.0f;
if (y1 > y3) {
float a = y2 / y1;
d = a / (1 + a) - 1;
} else {
float a = y3 / y2;
d = a / (1 + a);
}
return constrain_float(d, -0.5f, 0.5f);
}
// initialize averaging FFT windows as they are calculated
bool DSP::fft_init_average(FFTWindowState* fft)
{
if (fft->_avg_freq_bins == nullptr) {
fft->_avg_freq_bins = (float*)hal.util->malloc_type(sizeof(float) * (fft->_window_size), DSP_MEM_REGION);
if (fft->_avg_freq_bins == nullptr) {
return false;
}
}
return true;
}
// start averaging FFT windows as they are calculated
bool DSP::fft_start_average(FFTWindowState* fft)
{
if (fft->_averaging) {
return false;
}
if (!fft_init_average(fft)) {
return false;
}
fft->_averaging_samples = 0;
fft->_averaging = true;
return true;
}
// start averaging FFT windows as they are calculated
uint16_t DSP::fft_stop_average(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, float* freqs)
{
// ensure the window has been allocated even if we do nothing else
if (!fft_init_average(fft)) {
return 0;
}
if (!fft->_averaging) {
return 0;
}
fft->_averaging = false;
// scale by the number of samples
vector_scale_float(fft->_avg_freq_bins, fft->_averaging_samples, fft->_avg_freq_bins, fft->_bin_count);
const uint16_t smoothwidth = 1;
uint16_t bin_range = (MIN(end_bin + ((smoothwidth + 1) >> 1) + 2, fft->_bin_count) - start_bin) + 1;
// find the three highest peaks using a zero crossing algorithm
// allocate the scratch space locally as we are in a different thread to the regular FFT
float* scratch_space = (float*)hal.util->malloc_type(sizeof(float) * (fft->_bin_count + 1), DSP_MEM_REGION);
if (scratch_space == nullptr) {
return false;
}
uint16_t peaks[MAX_TRACKED_PEAKS] {};
uint16_t numpeaks = find_peaks(&fft->_avg_freq_bins[start_bin], bin_range,
scratch_space, peaks, MAX_TRACKED_PEAKS, 0.0f, -1.0f, smoothwidth, 2);
hal.util->free_type(scratch_space, sizeof(float) * (fft->_bin_count + 1), DSP_MEM_REGION);
// now try and find the lowest harmonic
for (uint16_t i = 0; i < numpeaks; i++) {
const uint16_t bin = peaks[i] + start_bin;
float d = calculate_jains_estimator(fft, fft->_avg_freq_bins, bin);
freqs[i] = (bin + d) * fft->_bin_resolution;
}
fft->_averaging_samples = 0;
return numpeaks;
}
// find all the peaks in the fft window using https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm // find all the peaks in the fft window using https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
// in general peakgrup > 2 is only good for very broad noisy peaks, <= 2 better for spikey peaks, although 1 will miss // in general peakgrup > 2 is only good for very broad noisy peaks, <= 2 better for spikey peaks, although 1 will miss
// a true spike 50% of the time // a true spike 50% of the time

View File

@ -61,12 +61,18 @@ public:
float* _derivative_freq_bins; float* _derivative_freq_bins;
// intermediate real FFT data // intermediate real FFT data
float* _rfft_data; float* _rfft_data;
// averaged frequency data via Welch's method
float* _avg_freq_bins;
// three highest peaks // three highest peaks
FrequencyPeakData _peak_data[MAX_TRACKED_PEAKS]; FrequencyPeakData _peak_data[MAX_TRACKED_PEAKS];
// Hanning window for incoming samples, see https://en.wikipedia.org/wiki/Window_function#Hann_.28Hanning.29_window // Hanning window for incoming samples, see https://en.wikipedia.org/wiki/Window_function#Hann_.28Hanning.29_window
float* _hanning_window; float* _hanning_window;
// Use in calculating the PS of the signal [Heinz] equations (20) & (21) // Use in calculating the PS of the signal [Heinz] equations (20) & (21)
float _window_scale; float _window_scale;
// averaging is ongoing
bool _averaging;
// number of samples in the average
uint32_t _averaging_samples;
virtual ~FFTWindowState(); virtual ~FFTWindowState();
FFTWindowState(uint16_t window_size, uint16_t sample_rate); FFTWindowState(uint16_t window_size, uint16_t sample_rate);
@ -77,6 +83,10 @@ public:
virtual void fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance) = 0; virtual void fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance) = 0;
// perform remaining steps of an FFT analysis // perform remaining steps of an FFT analysis
virtual uint16_t fft_analyse(FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) = 0; virtual uint16_t fft_analyse(FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) = 0;
// start averaging FFT data
bool fft_start_average(FFTWindowState* fft);
// finish the averaging process
uint16_t fft_stop_average(FFTWindowState* fft, uint16_t start_bin, uint16_t end_bin, float* peaks);
protected: protected:
// step 3: find the magnitudes of the complex data // step 3: find the magnitudes of the complex data
@ -91,8 +101,10 @@ protected:
virtual void vector_max_float(const float* vin, uint16_t len, float* max_value, uint16_t* max_index) const = 0; virtual void vector_max_float(const float* vin, uint16_t len, float* max_value, uint16_t* max_index) const = 0;
// find the mean value in an vector of floats // find the mean value in an vector of floats
virtual float vector_mean_float(const float* vin, uint16_t len) const = 0; virtual float vector_mean_float(const float* vin, uint16_t len) const = 0;
// multiple an vector of floats by a scale factor // multiply an vector of floats by a scale factor
virtual void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const = 0; virtual void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const = 0;
// add two vectors together
virtual void vector_add_float(const float* vin1, const float* vin2, float* vout, uint16_t len) const = 0;
// algorithm for finding peaks in noisy data as per https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm // algorithm for finding peaks in noisy data as per https://terpconnect.umd.edu/~toh/spectrum/PeakFindingandMeasurement.htm
uint16_t find_peaks(const float* input, uint16_t length, float* output, uint16_t* peaks, uint16_t peaklen, uint16_t find_peaks(const float* input, uint16_t length, float* output, uint16_t* peaks, uint16_t peaklen,
float slopeThreshold, float ampThreshold, uint16_t smoothwidth, uint16_t peakgroup) const; float slopeThreshold, float ampThreshold, uint16_t smoothwidth, uint16_t peakgroup) const;
@ -100,8 +112,13 @@ protected:
void derivative(const float* input, float* output, uint16_t n) const; void derivative(const float* input, float* output, uint16_t n) const;
void fastsmooth(float* input, uint16_t n, uint16_t smoothwidth) const; void fastsmooth(float* input, uint16_t n, uint16_t smoothwidth) const;
// quinn's frequency interpolator // Quinn's frequency interpolator
float calculate_quinns_second_estimator(const FFTWindowState* fft, const float* complex_fft, uint16_t k) const; float calculate_quinns_second_estimator(const FFTWindowState* fft, const float* complex_fft, uint16_t k) const;
float tau(const float x) const; float tau(const float x) const;
// Jain's estimator
float calculate_jains_estimator(const FFTWindowState* fft, const float* real_fft, uint16_t k_max);
// init averaging FFT data
bool fft_init_average(FFTWindowState* fft);
#endif // HAL_WITH_DSP #endif // HAL_WITH_DSP
}; };

View File

@ -47,6 +47,7 @@ protected:
virtual void vector_max_float(const float* vin, uint16_t len, float* maxValue, uint16_t* maxIndex) const override {} virtual void vector_max_float(const float* vin, uint16_t len, float* maxValue, uint16_t* maxIndex) const override {}
virtual void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const override {} virtual void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const override {}
virtual float vector_mean_float(const float* vin, uint16_t len) const override { return 0.0f; }; virtual float vector_mean_float(const float* vin, uint16_t len) const override { return 0.0f; };
virtual void vector_add_float(const float* vin1, const float* vin2, float* vout, uint16_t len) const override {}
public: public:
void run_tests(); void run_tests();
} dsptest; } dsptest;