AC_AttitudeControl: move `euler_rate_to_ang_vel`, `ang_vel_to_euler_rate` and `euler_accel_limit` to Quaternion attitude

This commit is contained in:
Iampete1 2024-02-19 23:46:36 +00:00 committed by Randy Mackay
parent b66ecd8884
commit f3c32a7c9e
4 changed files with 56 additions and 47 deletions

View File

@ -174,7 +174,7 @@ void AC_AttitudeControl::relax_attitude_controllers()
// Initialize the angular rate variables to the current rate // Initialize the angular rate variables to the current rate
_ang_vel_target = _ahrs.get_gyro(); _ang_vel_target = _ahrs.get_gyro();
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); ang_vel_to_euler_rate(_attitude_target, _ang_vel_target, _euler_rate_target);
_ang_vel_body = _ahrs.get_gyro(); _ang_vel_body = _ahrs.get_gyro();
// Initialize remaining variables // Initialize remaining variables
@ -253,7 +253,7 @@ void AC_AttitudeControl::input_quaternion(Quaternion& attitude_desired_quat, Vec
_attitude_target.to_euler(_euler_angle_target); _attitude_target.to_euler(_euler_angle_target);
// Convert body-frame angular velocity into euler angle derivative of desired attitude // Convert body-frame angular velocity into euler angle derivative of desired attitude
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); ang_vel_to_euler_rate(_attitude_target, _ang_vel_target, _euler_rate_target);
// rotate target and normalize // rotate target and normalize
Quaternion attitude_desired_update; Quaternion attitude_desired_update;
@ -281,7 +281,7 @@ void AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(float euler
if (_rate_bf_ff_enabled) { if (_rate_bf_ff_enabled) {
// translate the roll pitch and yaw acceleration limits to the euler axis // translate the roll pitch and yaw acceleration limits to the euler axis
const Vector3f euler_accel = euler_accel_limit(_euler_angle_target, Vector3f{get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()}); const Vector3f euler_accel = euler_accel_limit(_attitude_target, Vector3f{get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()});
// When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler // When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler
// angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration // angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration
@ -294,11 +294,11 @@ void AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(float euler
_euler_rate_target.z = input_shaping_ang_vel(_euler_rate_target.z, euler_yaw_rate, euler_accel.z, _dt, _rate_y_tc); _euler_rate_target.z = input_shaping_ang_vel(_euler_rate_target.z, euler_yaw_rate, euler_accel.z, _dt, _rate_y_tc);
// Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward
euler_rate_to_ang_vel(_euler_angle_target, _euler_rate_target, _ang_vel_target); euler_rate_to_ang_vel(_attitude_target, _euler_rate_target, _ang_vel_target);
// Limit the angular velocity // Limit the angular velocity
ang_vel_limit(_ang_vel_target, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max)); ang_vel_limit(_ang_vel_target, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max));
// Convert body-frame angular velocity into euler angle derivative of desired attitude // Convert body-frame angular velocity into euler angle derivative of desired attitude
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); ang_vel_to_euler_rate(_attitude_target, _ang_vel_target, _euler_rate_target);
} else { } else {
// When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed. // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed.
_euler_angle_target.x = euler_roll_angle; _euler_angle_target.x = euler_roll_angle;
@ -333,7 +333,7 @@ void AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(float euler_roll_angle
const float slew_yaw_max_rads = get_slew_yaw_max_rads(); const float slew_yaw_max_rads = get_slew_yaw_max_rads();
if (_rate_bf_ff_enabled) { if (_rate_bf_ff_enabled) {
// translate the roll pitch and yaw acceleration limits to the euler axis // translate the roll pitch and yaw acceleration limits to the euler axis
const Vector3f euler_accel = euler_accel_limit(_euler_angle_target, Vector3f{get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()}); const Vector3f euler_accel = euler_accel_limit(_attitude_target, Vector3f{get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()});
// When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler // When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler
// angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration // angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration
@ -346,11 +346,11 @@ void AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(float euler_roll_angle
} }
// Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward
euler_rate_to_ang_vel(_euler_angle_target, _euler_rate_target, _ang_vel_target); euler_rate_to_ang_vel(_attitude_target, _euler_rate_target, _ang_vel_target);
// Limit the angular velocity // Limit the angular velocity
ang_vel_limit(_ang_vel_target, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max)); ang_vel_limit(_ang_vel_target, radians(_ang_vel_roll_max), radians(_ang_vel_pitch_max), radians(_ang_vel_yaw_max));
// Convert body-frame angular velocity into euler angle derivative of desired attitude // Convert body-frame angular velocity into euler angle derivative of desired attitude
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); ang_vel_to_euler_rate(_attitude_target, _ang_vel_target, _euler_rate_target);
} else { } else {
// When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed. // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed.
_euler_angle_target.x = euler_roll_angle; _euler_angle_target.x = euler_roll_angle;
@ -388,7 +388,7 @@ void AC_AttitudeControl::input_euler_rate_roll_pitch_yaw(float euler_roll_rate_c
if (_rate_bf_ff_enabled) { if (_rate_bf_ff_enabled) {
// translate the roll pitch and yaw acceleration limits to the euler axis // translate the roll pitch and yaw acceleration limits to the euler axis
const Vector3f euler_accel = euler_accel_limit(_euler_angle_target, Vector3f{get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()}); const Vector3f euler_accel = euler_accel_limit(_attitude_target, Vector3f{get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()});
// When acceleration limiting is enabled, the input shaper constrains angular acceleration, slewing // When acceleration limiting is enabled, the input shaper constrains angular acceleration, slewing
// the output rate towards the input rate. // the output rate towards the input rate.
@ -397,7 +397,7 @@ void AC_AttitudeControl::input_euler_rate_roll_pitch_yaw(float euler_roll_rate_c
_euler_rate_target.z = input_shaping_ang_vel(_euler_rate_target.z, euler_yaw_rate, euler_accel.z, _dt, _rate_y_tc); _euler_rate_target.z = input_shaping_ang_vel(_euler_rate_target.z, euler_yaw_rate, euler_accel.z, _dt, _rate_y_tc);
// Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward
euler_rate_to_ang_vel(_euler_angle_target, _euler_rate_target, _ang_vel_target); euler_rate_to_ang_vel(_attitude_target, _euler_rate_target, _ang_vel_target);
} else { } else {
// When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed. // When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed.
// Pitch angle is restricted to +- 85.0 degrees to avoid gimbal lock discontinuities. // Pitch angle is restricted to +- 85.0 degrees to avoid gimbal lock discontinuities.
@ -437,7 +437,7 @@ void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, fl
_ang_vel_target.z = input_shaping_ang_vel(_ang_vel_target.z, yaw_rate_rads, get_accel_yaw_max_radss(), _dt, _rate_y_tc); _ang_vel_target.z = input_shaping_ang_vel(_ang_vel_target.z, yaw_rate_rads, get_accel_yaw_max_radss(), _dt, _rate_y_tc);
// Convert body-frame angular velocity into euler angle derivative of desired attitude // Convert body-frame angular velocity into euler angle derivative of desired attitude
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); ang_vel_to_euler_rate(_attitude_target, _ang_vel_target, _euler_rate_target);
} else { } else {
// When feedforward is not enabled, the quaternion is calculated and is input into the target and the feedforward rate is zeroed. // When feedforward is not enabled, the quaternion is calculated and is input into the target and the feedforward rate is zeroed.
Quaternion attitude_target_update; Quaternion attitude_target_update;
@ -473,7 +473,7 @@ void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw_2(float roll_rate_bf_cds,
_ahrs.get_quat_body_to_ned(_attitude_target); _ahrs.get_quat_body_to_ned(_attitude_target);
_attitude_target.to_euler(_euler_angle_target); _attitude_target.to_euler(_euler_angle_target);
// Convert body-frame angular velocity into euler angle derivative of desired attitude // Convert body-frame angular velocity into euler angle derivative of desired attitude
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); ang_vel_to_euler_rate(_attitude_target, _ang_vel_target, _euler_rate_target);
_ang_vel_body = _ang_vel_target; _ang_vel_body = _ang_vel_target;
} }
@ -519,7 +519,7 @@ void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw_3(float roll_rate_bf_cds,
_attitude_target.to_euler(_euler_angle_target); _attitude_target.to_euler(_euler_angle_target);
// Convert body-frame angular velocity into euler angle derivative of desired attitude // Convert body-frame angular velocity into euler angle derivative of desired attitude
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); ang_vel_to_euler_rate(_attitude_target, _ang_vel_target, _euler_rate_target);
// Compute the angular velocity target from the integrated rate error // Compute the angular velocity target from the integrated rate error
_attitude_ang_error.to_axis_angle(attitude_error); _attitude_ang_error.to_axis_angle(attitude_error);
@ -603,7 +603,7 @@ void AC_AttitudeControl::input_thrust_vector_rate_heading(const Vector3f& thrust
} }
// Convert body-frame angular velocity into euler angle derivative of desired attitude // Convert body-frame angular velocity into euler angle derivative of desired attitude
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); ang_vel_to_euler_rate(_attitude_target, _ang_vel_target, _euler_rate_target);
// Call quaternion attitude controller // Call quaternion attitude controller
attitude_controller_run_quat(); attitude_controller_run_quat();
@ -651,7 +651,7 @@ void AC_AttitudeControl::input_thrust_vector_heading(const Vector3f& thrust_vect
} }
// Convert body-frame angular velocity into euler angle derivative of desired attitude // Convert body-frame angular velocity into euler angle derivative of desired attitude
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); ang_vel_to_euler_rate(_attitude_target, _ang_vel_target, _euler_rate_target);
// Call quaternion attitude controller // Call quaternion attitude controller
attitude_controller_run_quat(); attitude_controller_run_quat();
@ -908,24 +908,25 @@ void AC_AttitudeControl::ang_vel_limit(Vector3f& euler_rad, float ang_vel_roll_m
} }
// translates body frame acceleration limits to the euler axis // translates body frame acceleration limits to the euler axis
Vector3f AC_AttitudeControl::euler_accel_limit(const Vector3f &euler_rad, const Vector3f &euler_accel) Vector3f AC_AttitudeControl::euler_accel_limit(const Quaternion &att, const Vector3f &euler_accel)
{ {
float sin_phi = constrain_float(fabsf(sinf(euler_rad.x)), 0.1f, 1.0f); if (!is_positive(euler_accel.x) || !is_positive(euler_accel.y) || !is_positive(euler_accel.z)) {
float cos_phi = constrain_float(fabsf(cosf(euler_rad.x)), 0.1f, 1.0f); return Vector3f { euler_accel };
float sin_theta = constrain_float(fabsf(sinf(euler_rad.y)), 0.1f, 1.0f);
float cos_theta = constrain_float(fabsf(cosf(euler_rad.y)), 0.1f, 1.0f);
Vector3f rot_accel;
if (is_zero(euler_accel.x) || is_zero(euler_accel.y) || is_zero(euler_accel.z) || is_negative(euler_accel.x) || is_negative(euler_accel.y) || is_negative(euler_accel.z)) {
rot_accel.x = euler_accel.x;
rot_accel.y = euler_accel.y;
rot_accel.z = euler_accel.z;
} else {
rot_accel.x = euler_accel.x;
rot_accel.y = MIN(euler_accel.y / cos_phi, euler_accel.z / sin_phi);
rot_accel.z = MIN(MIN(euler_accel.x / sin_theta, euler_accel.y / (sin_phi * cos_theta)), euler_accel.z / (cos_phi * cos_theta));
} }
return rot_accel;
const float phi = att.get_euler_roll();
const float theta = att.get_euler_pitch();
const float sin_phi = constrain_float(fabsf(sinf(phi)), 0.1f, 1.0f);
const float cos_phi = constrain_float(fabsf(cosf(phi)), 0.1f, 1.0f);
const float sin_theta = constrain_float(fabsf(sinf(theta)), 0.1f, 1.0f);
const float cos_theta = constrain_float(fabsf(cosf(theta)), 0.1f, 1.0f);
return Vector3f {
euler_accel.x,
MIN(euler_accel.y / cos_phi, euler_accel.z / sin_phi),
MIN(MIN(euler_accel.x / sin_theta, euler_accel.y / (sin_phi * cos_theta)), euler_accel.z / (cos_phi * cos_theta))
};
} }
// Sets attitude target to vehicle attitude and sets all rates to zero // Sets attitude target to vehicle attitude and sets all rates to zero
@ -957,7 +958,7 @@ void AC_AttitudeControl::reset_yaw_target_and_rate(bool reset_rate)
_euler_rate_target.z = 0.0f; _euler_rate_target.z = 0.0f;
// Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward
euler_rate_to_ang_vel(_euler_angle_target, _euler_rate_target, _ang_vel_target); euler_rate_to_ang_vel(_attitude_target, _euler_rate_target, _ang_vel_target);
} }
} }
@ -976,12 +977,15 @@ void AC_AttitudeControl::inertial_frame_reset()
} }
// Convert a 321-intrinsic euler angle derivative to an angular velocity vector // Convert a 321-intrinsic euler angle derivative to an angular velocity vector
void AC_AttitudeControl::euler_rate_to_ang_vel(const Vector3f& euler_rad, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads) void AC_AttitudeControl::euler_rate_to_ang_vel(const Quaternion& att, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads)
{ {
float sin_theta = sinf(euler_rad.y); const float theta = att.get_euler_pitch();
float cos_theta = cosf(euler_rad.y); const float phi = att.get_euler_roll();
float sin_phi = sinf(euler_rad.x);
float cos_phi = cosf(euler_rad.x); const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
ang_vel_rads.x = euler_rate_rads.x - sin_theta * euler_rate_rads.z; ang_vel_rads.x = euler_rate_rads.x - sin_theta * euler_rate_rads.z;
ang_vel_rads.y = cos_phi * euler_rate_rads.y + sin_phi * cos_theta * euler_rate_rads.z; ang_vel_rads.y = cos_phi * euler_rate_rads.y + sin_phi * cos_theta * euler_rate_rads.z;
@ -990,12 +994,15 @@ void AC_AttitudeControl::euler_rate_to_ang_vel(const Vector3f& euler_rad, const
// Convert an angular velocity vector to a 321-intrinsic euler angle derivative // Convert an angular velocity vector to a 321-intrinsic euler angle derivative
// Returns false if the vehicle is pitched 90 degrees up or down // Returns false if the vehicle is pitched 90 degrees up or down
bool AC_AttitudeControl::ang_vel_to_euler_rate(const Vector3f& euler_rad, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads) bool AC_AttitudeControl::ang_vel_to_euler_rate(const Quaternion& att, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads)
{ {
float sin_theta = sinf(euler_rad.y); const float theta = att.get_euler_pitch();
float cos_theta = cosf(euler_rad.y); const float phi = att.get_euler_roll();
float sin_phi = sinf(euler_rad.x);
float cos_phi = cosf(euler_rad.x); const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
const float sin_phi = sinf(phi);
const float cos_phi = cosf(phi);
// When the vehicle pitches all the way up or all the way down, the euler angles become discontinuous. In this case, we just return false. // When the vehicle pitches all the way up or all the way down, the euler angles become discontinuous. In this case, we just return false.
if (is_zero(cos_theta)) { if (is_zero(cos_theta)) {

View File

@ -200,11 +200,11 @@ public:
virtual void rate_controller_run() = 0; virtual void rate_controller_run() = 0;
// Convert a 321-intrinsic euler angle derivative to an angular velocity vector // Convert a 321-intrinsic euler angle derivative to an angular velocity vector
void euler_rate_to_ang_vel(const Vector3f& euler_rad, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads); void euler_rate_to_ang_vel(const Quaternion& att, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads);
// Convert an angular velocity vector to a 321-intrinsic euler angle derivative // Convert an angular velocity vector to a 321-intrinsic euler angle derivative
// Returns false if the vehicle is pitched 90 degrees up or down // Returns false if the vehicle is pitched 90 degrees up or down
bool ang_vel_to_euler_rate(const Vector3f& euler_rad, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads); bool ang_vel_to_euler_rate(const Quaternion& att, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads);
// Specifies whether the attitude controller should use the square root controller in the attitude correction. // Specifies whether the attitude controller should use the square root controller in the attitude correction.
// This is used during Autotune to ensure the P term is tuned without being influenced by the acceleration limit of the square root controller. // This is used during Autotune to ensure the P term is tuned without being influenced by the acceleration limit of the square root controller.
@ -326,7 +326,7 @@ public:
void ang_vel_limit(Vector3f& euler_rad, float ang_vel_roll_max, float ang_vel_pitch_max, float ang_vel_yaw_max) const; void ang_vel_limit(Vector3f& euler_rad, float ang_vel_roll_max, float ang_vel_pitch_max, float ang_vel_yaw_max) const;
// translates body frame acceleration limits to the euler axis // translates body frame acceleration limits to the euler axis
Vector3f euler_accel_limit(const Vector3f &euler_rad, const Vector3f &euler_accel); Vector3f euler_accel_limit(const Quaternion &att, const Vector3f &euler_accel);
// Calculates the body frame angular velocities to follow the target attitude // Calculates the body frame angular velocities to follow the target attitude
void attitude_controller_run_quat(); void attitude_controller_run_quat();

View File

@ -361,7 +361,9 @@ void AC_AttitudeControl_Heli::passthrough_bf_roll_pitch_rate_yaw(float roll_pass
// convert angle error rotation vector into 321-intrinsic euler angle difference // convert angle error rotation vector into 321-intrinsic euler angle difference
// NOTE: this results an an approximation linearized about the vehicle's attitude // NOTE: this results an an approximation linearized about the vehicle's attitude
if (ang_vel_to_euler_rate(Vector3f(_ahrs.roll, _ahrs.pitch, _ahrs.yaw), _att_error_rot_vec_rad, att_error_euler_rad)) { Quaternion att;
_ahrs.get_quat_body_to_ned(att);
if (ang_vel_to_euler_rate(att, _att_error_rot_vec_rad, att_error_euler_rad)) {
_euler_angle_target.x = wrap_PI(att_error_euler_rad.x + _ahrs.roll); _euler_angle_target.x = wrap_PI(att_error_euler_rad.x + _ahrs.roll);
_euler_angle_target.y = wrap_PI(att_error_euler_rad.y + _ahrs.pitch); _euler_angle_target.y = wrap_PI(att_error_euler_rad.y + _ahrs.pitch);
_euler_angle_target.z = wrap_2PI(att_error_euler_rad.z + _ahrs.yaw); _euler_angle_target.z = wrap_2PI(att_error_euler_rad.z + _ahrs.yaw);

View File

@ -42,7 +42,7 @@ void AC_AttitudeControl_TS::relax_attitude_controllers(bool exclude_pitch)
// Initialize the roll and yaw angular rate variables to the current rate // Initialize the roll and yaw angular rate variables to the current rate
_ang_vel_target = _ahrs.get_gyro(); _ang_vel_target = _ahrs.get_gyro();
ang_vel_to_euler_rate(_euler_angle_target, _ang_vel_target, _euler_rate_target); ang_vel_to_euler_rate(_attitude_target, _ang_vel_target, _euler_rate_target);
_ang_vel_body.x = _ahrs.get_gyro().x; _ang_vel_body.x = _ahrs.get_gyro().x;
_ang_vel_body.z = _ahrs.get_gyro().z; _ang_vel_body.z = _ahrs.get_gyro().z;