mirror of https://github.com/ArduPilot/ardupilot
AP_Math: Control: Refactor to use Jerk
This commit is contained in:
parent
397cd8cbe0
commit
eff91e87ca
|
@ -25,7 +25,7 @@
|
|||
#include <AP_InternalError/AP_InternalError.h>
|
||||
|
||||
// control default definitions
|
||||
#define CONTROL_TIME_CONSTANT_RATIO 4.0f // time constant to ensure stable kinimatic path generation
|
||||
#define CONTROL_TIME_CONSTANT_RATIO 4.0 // time constant to ensure stable kinematic path generation
|
||||
|
||||
// update_vel_accel - single axis projection of velocity, vel, forwards in time based on a time step of dt and acceleration of accel.
|
||||
// the velocity is not moved in the direction of limit if limit is not set to zero
|
||||
|
@ -96,72 +96,36 @@ void update_pos_vel_accel_xy(Vector2p& pos, Vector2f& vel, const Vector2f& accel
|
|||
The time constant must be positive.
|
||||
The function alters the variable accel to follow a jerk limited kinematic path to accel_input
|
||||
*/
|
||||
void shape_accel(const float accel_input, float& accel,
|
||||
const float accel_min, const float accel_max,
|
||||
const float tc, const float dt)
|
||||
void shape_accel(float accel_input, float& accel,
|
||||
float jerk_max, float dt)
|
||||
{
|
||||
// sanity check tc
|
||||
if (!is_positive(tc)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate time constants and limits to ensure stable operation
|
||||
const float KPa = 1.0 / tc;
|
||||
|
||||
float jerk_max = 0.0;
|
||||
if (is_negative(accel_min) && is_positive(accel_max)){
|
||||
jerk_max = MAX(-accel_min, accel_max) * KPa;
|
||||
}
|
||||
|
||||
// jerk limit acceleration change
|
||||
float accel_delta = accel_input - accel;
|
||||
if (is_positive(jerk_max)) {
|
||||
accel_delta = constrain_float(accel_delta, -jerk_max * dt, jerk_max * dt);
|
||||
}
|
||||
accel += accel_delta;
|
||||
|
||||
// limit acceleration to accel_max
|
||||
if (is_negative(accel_min) && is_positive(accel_max)){
|
||||
accel = constrain_float(accel, accel_min, accel_max);
|
||||
}
|
||||
}
|
||||
|
||||
// 2D version
|
||||
void shape_accel_xy(const Vector2f& accel_input, Vector2f& accel,
|
||||
float accel_max, float tc, float dt)
|
||||
float jerk_max, float dt)
|
||||
{
|
||||
// sanity check tc
|
||||
if (!is_positive(tc)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate time constants and limits to ensure stable operation
|
||||
const float KPa = 1.0 / tc;
|
||||
const float jerk_max = accel_max * KPa;
|
||||
|
||||
// jerk limit acceleration change
|
||||
Vector2f accel_delta = accel_input - accel;
|
||||
if (is_positive(jerk_max)) {
|
||||
accel_delta.limit_length(jerk_max * dt);
|
||||
}
|
||||
accel = accel + accel_delta;
|
||||
|
||||
// limit acceleration to accel_max
|
||||
if (is_negative(accel_max)) {
|
||||
// we may want to allow this for some applications but call error for now.
|
||||
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||||
} else if (is_positive(accel_max)) {
|
||||
accel.limit_length(accel_max);
|
||||
}
|
||||
}
|
||||
|
||||
void shape_accel_xy(const Vector3f& accel_input, Vector3f& accel,
|
||||
float accel_max, float tc, float dt)
|
||||
float jerk_max, float dt)
|
||||
{
|
||||
const Vector2f accel_input_2f {accel_input.x, accel_input.y};
|
||||
Vector2f accel_2f {accel.x, accel.y};
|
||||
|
||||
shape_accel_xy(accel_input_2f, accel_2f, accel_max, tc, dt);
|
||||
shape_accel_xy(accel_input_2f, accel_2f, jerk_max, dt);
|
||||
accel.x = accel_2f.x;
|
||||
accel.y = accel_2f.y;
|
||||
}
|
||||
|
@ -179,27 +143,19 @@ void shape_accel_xy(const Vector3f& accel_input, Vector3f& accel,
|
|||
The function alters the variable accel to follow a jerk limited kinematic path to vel_input and accel_input
|
||||
The accel_max limit can be removed by setting it to zero.
|
||||
*/
|
||||
void shape_vel_accel(const float vel_input1, const float accel_input,
|
||||
const float vel, float& accel,
|
||||
const float vel_min, const float vel_max,
|
||||
const float accel_min, const float accel_max,
|
||||
const float tc, const float dt)
|
||||
void shape_vel_accel(float vel_input, float accel_input,
|
||||
float vel, float& accel,
|
||||
float accel_min, float accel_max,
|
||||
float jerk_max, float dt, bool limit_total_accel)
|
||||
{
|
||||
// sanity check tc
|
||||
if (!is_positive(tc)) {
|
||||
// sanity check accel_max
|
||||
if (!(is_negative(accel_min) && is_positive(accel_max))) {
|
||||
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate time constants and limits to ensure stable operation
|
||||
const float KPa = 1.0 / tc;
|
||||
|
||||
// we are changing vel_input, but don't want the change in the caller
|
||||
float vel_input = vel_input1;
|
||||
|
||||
// limit velocity to vel_max
|
||||
if (is_negative(vel_min) && is_positive(vel_max)){
|
||||
vel_input = constrain_float(vel_input, vel_min, vel_max);
|
||||
}
|
||||
const float KPa = jerk_max / accel_max;
|
||||
|
||||
// velocity error to be corrected
|
||||
float vel_error = vel_input - vel;
|
||||
|
@ -207,41 +163,53 @@ void shape_vel_accel(const float vel_input1, const float accel_input,
|
|||
// acceleration to correct velocity
|
||||
float accel_target = vel_error * KPa;
|
||||
|
||||
// constrain correction acceleration from accel_min to accel_max
|
||||
accel_target = constrain_float(accel_target, accel_min, accel_max);
|
||||
|
||||
// velocity correction with input velocity
|
||||
accel_target += accel_input;
|
||||
|
||||
shape_accel(accel_target, accel, accel_min, accel_max, tc, dt);
|
||||
// constrain total acceleration from accel_min to accel_max
|
||||
if (limit_total_accel) {
|
||||
accel_target = constrain_float(accel_target, accel_min, accel_max);
|
||||
}
|
||||
|
||||
shape_accel(accel_target, accel, jerk_max, dt);
|
||||
}
|
||||
|
||||
// 2D version
|
||||
void shape_vel_accel_xy(const Vector2f &vel_input1, const Vector2f& accel_input,
|
||||
const Vector2f& vel, Vector2f& accel,
|
||||
const float vel_max, const float accel_max, const float tc, const float dt)
|
||||
float accel_max, float jerk_max, float dt, bool limit_total_accel)
|
||||
{
|
||||
// sanity check tc
|
||||
if (!is_positive(tc)) {
|
||||
// sanity check accel_max
|
||||
if (!is_positive(accel_max)) {
|
||||
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||||
return;
|
||||
}
|
||||
|
||||
Vector2f vel_input = vel_input1;
|
||||
|
||||
// limit velocity to vel_max
|
||||
if (is_negative(vel_max)) {
|
||||
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||||
} else if (is_positive(vel_max)) {
|
||||
vel_input.limit_length(vel_max);
|
||||
}
|
||||
|
||||
// Calculate time constants and limits to ensure stable operation
|
||||
const float KPa = 1.0 / tc;
|
||||
const float KPa = jerk_max / accel_max;
|
||||
|
||||
// velocity error to be corrected
|
||||
const Vector2f vel_error = vel_input - vel;
|
||||
|
||||
// acceleration to correct velocity
|
||||
Vector2f accel_target = vel_error * KPa;
|
||||
|
||||
// limit correction acceleration to accel_max
|
||||
accel_target.limit_length(accel_max);
|
||||
|
||||
accel_target += accel_input;
|
||||
|
||||
shape_accel_xy(accel_target, accel, accel_max, tc, dt);
|
||||
// limit total acceleration to accel_max
|
||||
if (limit_total_accel) {
|
||||
accel_target.limit_length(accel_max);
|
||||
}
|
||||
|
||||
shape_accel_xy(accel_target, accel, jerk_max, dt);
|
||||
}
|
||||
|
||||
/* shape_pos_vel_accel calculate a jerk limited path from the current position, velocity and acceleration to an input position and velocity.
|
||||
|
@ -256,19 +224,21 @@ void shape_vel_accel_xy(const Vector2f &vel_input1, const Vector2f& accel_input,
|
|||
The function alters the variable accel to follow a jerk limited kinematic path to pos_input, vel_input and accel_input
|
||||
The vel_max, vel_correction_max, and accel_max limits can be removed by setting the desired limit to zero.
|
||||
*/
|
||||
void shape_pos_vel_accel(const postype_t pos_input, const float vel_input, const float accel_input,
|
||||
const postype_t pos, const float vel, float& accel,
|
||||
const float vel_correction_max, const float vel_min, const float vel_max,
|
||||
const float accel_min, const float accel_max, const float tc, const float dt)
|
||||
void shape_pos_vel_accel(postype_t pos_input, float vel_input, float accel_input,
|
||||
postype_t pos, float vel, float& accel,
|
||||
float vel_min, float vel_max,
|
||||
float accel_min, float accel_max,
|
||||
float jerk_max, float dt, bool limit_total_accel)
|
||||
{
|
||||
// sanity check tc
|
||||
if (!is_positive(tc)) {
|
||||
// sanity check accel_max
|
||||
if (!(is_negative(accel_min) && is_positive(accel_max))) {
|
||||
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate time constants and limits to ensure stable operation
|
||||
const float KPv = 1.0 / (CONTROL_TIME_CONSTANT_RATIO*tc);
|
||||
const float accel_tc_max = accel_max*(1-1.0f/CONTROL_TIME_CONSTANT_RATIO);
|
||||
const float KPv = jerk_max / (CONTROL_TIME_CONSTANT_RATIO * MAX(-accel_min, accel_max));
|
||||
const float accel_tc_max = MIN(-accel_min, accel_max) * (1.0 - 1.0 / CONTROL_TIME_CONSTANT_RATIO);
|
||||
|
||||
// position error to be corrected
|
||||
float pos_error = pos_input - pos;
|
||||
|
@ -276,29 +246,32 @@ void shape_pos_vel_accel(const postype_t pos_input, const float vel_input, const
|
|||
// velocity to correct position
|
||||
float vel_target = sqrt_controller(pos_error, KPv, accel_tc_max, dt);
|
||||
|
||||
// limit velocity correction to vel_correction_max
|
||||
if (is_positive(vel_correction_max)) {
|
||||
vel_target = constrain_float(vel_target, -vel_correction_max, vel_correction_max);
|
||||
// limit velocity to vel_max
|
||||
if (is_negative(vel_min) && is_positive(vel_max)){
|
||||
vel_target = constrain_float(vel_target, vel_min, vel_max);
|
||||
}
|
||||
|
||||
// velocity correction with input velocity
|
||||
vel_target += vel_input;
|
||||
|
||||
shape_vel_accel(vel_target, accel_input, vel, accel, vel_min, vel_max, accel_min, accel_max, tc, dt);
|
||||
shape_vel_accel(vel_target, accel_input, vel, accel, accel_min, accel_max, jerk_max, dt, limit_total_accel);
|
||||
}
|
||||
|
||||
// 2D version
|
||||
void shape_pos_vel_accel_xy(const Vector2p& pos_input, const Vector2f& vel_input, const Vector2f& accel_input,
|
||||
const Vector2p& pos, const Vector2f& vel, Vector2f& accel,
|
||||
const float vel_correction_max, const float vel_max, const float accel_max, const float tc, const float dt)
|
||||
float vel_max, float accel_max,
|
||||
float jerk_max, float dt, bool limit_total_accel)
|
||||
{
|
||||
if (!is_positive(tc)) {
|
||||
// sanity check accel_max
|
||||
if (!is_positive(accel_max)) {
|
||||
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate time constants and limits to ensure stable operation
|
||||
const float KPv = 1.0f / (CONTROL_TIME_CONSTANT_RATIO*tc);
|
||||
const float accel_tc_max = accel_max*(1.0f - 1.0f/CONTROL_TIME_CONSTANT_RATIO);
|
||||
const float KPv = jerk_max / (CONTROL_TIME_CONSTANT_RATIO * accel_max);
|
||||
const float accel_tc_max = accel_max * (1.0 - 1.0 / CONTROL_TIME_CONSTANT_RATIO);
|
||||
|
||||
// position error to be corrected
|
||||
Vector2f pos_error = (pos_input - pos).tofloat();
|
||||
|
@ -306,15 +279,17 @@ void shape_pos_vel_accel_xy(const Vector2p& pos_input, const Vector2f& vel_input
|
|||
// velocity to correct position
|
||||
Vector2f vel_target = sqrt_controller(pos_error, KPv, accel_tc_max, dt);
|
||||
|
||||
// limit velocity correction to vel_correction_max
|
||||
if (is_positive(vel_correction_max)) {
|
||||
vel_target.limit_length(vel_correction_max);
|
||||
// limit velocity to vel_max
|
||||
if (is_negative(vel_max)) {
|
||||
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||||
} else if (is_positive(vel_max)) {
|
||||
vel_target.limit_length(vel_max);
|
||||
}
|
||||
|
||||
// velocity correction with input velocity
|
||||
vel_target = vel_target + vel_input;
|
||||
|
||||
shape_vel_accel_xy(vel_target, accel_input, vel, accel, vel_max, accel_max, tc, dt);
|
||||
shape_vel_accel_xy(vel_target, accel_input, vel, accel, accel_max, jerk_max, dt, limit_total_accel);
|
||||
}
|
||||
|
||||
// proportional controller with piecewise sqrt sections to constrain second derivative
|
||||
|
@ -327,19 +302,19 @@ float sqrt_controller(float error, float p, float second_ord_lim, float dt)
|
|||
} else if (is_zero(p)) {
|
||||
// P term is zero but we have a second order limit.
|
||||
if (is_positive(error)) {
|
||||
correction_rate = safe_sqrt(2.0f * second_ord_lim * (error));
|
||||
correction_rate = safe_sqrt(2.0 * second_ord_lim * (error));
|
||||
} else if (is_negative(error)) {
|
||||
correction_rate = -safe_sqrt(2.0f * second_ord_lim * (-error));
|
||||
correction_rate = -safe_sqrt(2.0 * second_ord_lim * (-error));
|
||||
} else {
|
||||
correction_rate = 0.0f;
|
||||
correction_rate = 0.0;
|
||||
}
|
||||
} else {
|
||||
// Both the P and second order limit have been defined.
|
||||
const float linear_dist = second_ord_lim / sq(p);
|
||||
if (error > linear_dist) {
|
||||
correction_rate = safe_sqrt(2.0f * second_ord_lim * (error - (linear_dist / 2.0f)));
|
||||
correction_rate = safe_sqrt(2.0 * second_ord_lim * (error - (linear_dist / 2.0)));
|
||||
} else if (error < -linear_dist) {
|
||||
correction_rate = -safe_sqrt(2.0f * second_ord_lim * (-error - (linear_dist / 2.0f)));
|
||||
correction_rate = -safe_sqrt(2.0 * second_ord_lim * (-error - (linear_dist / 2.0)));
|
||||
} else {
|
||||
correction_rate = error * p;
|
||||
}
|
||||
|
@ -368,13 +343,13 @@ Vector2f sqrt_controller(const Vector2f& error, float p, float second_ord_lim, f
|
|||
float inv_sqrt_controller(float output, float p, float D_max)
|
||||
{
|
||||
if (is_positive(D_max) && is_zero(p)) {
|
||||
return (output * output) / (2.0f * D_max);
|
||||
return (output * output) / (2.0 * D_max);
|
||||
}
|
||||
if ((is_negative(D_max) || is_zero(D_max)) && !is_zero(p)) {
|
||||
return output / p;
|
||||
}
|
||||
if ((is_negative(D_max) || is_zero(D_max)) && is_zero(p)) {
|
||||
return 0.0f;
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
// calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function
|
||||
|
@ -386,7 +361,7 @@ float inv_sqrt_controller(float output, float p, float D_max)
|
|||
}
|
||||
|
||||
const float linear_dist = D_max / sq(p);
|
||||
const float stopping_dist = (linear_dist * 0.5f) + sq(output) / (2.0f * D_max);
|
||||
const float stopping_dist = (linear_dist * 0.5f) + sq(output) / (2.0 * D_max);
|
||||
return is_positive(output) ? stopping_dist : -stopping_dist;
|
||||
}
|
||||
|
||||
|
@ -401,7 +376,7 @@ float stopping_distance(float velocity, float p, float accel_max)
|
|||
float kinematic_limit(Vector3f direction, float max_xy, float max_z_pos, float max_z_neg)
|
||||
{
|
||||
if (is_zero(direction.length_squared()) || is_zero(max_xy) || is_zero(max_z_pos) || is_zero(max_z_neg)) {
|
||||
return 0.0f;
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
max_xy = fabsf(max_xy);
|
||||
|
|
|
@ -49,14 +49,14 @@ void update_pos_vel_accel_xy(Vector2p& pos, Vector2f& vel, const Vector2f& accel
|
|||
The time constant must be positive.
|
||||
The function alters the variable accel to follow a jerk limited kinematic path to accel_input
|
||||
*/
|
||||
void shape_accel(const float accel_input, float& accel,
|
||||
const float accel_min, const float accel_max,
|
||||
const float tc, const float dt);
|
||||
void shape_accel(float accel_input, float& accel,
|
||||
float jerk_max, float dt);
|
||||
|
||||
void shape_accel_xy(const Vector2f& accel_input, Vector2f& accel,
|
||||
const float accel_max, const float tc, const float dt);
|
||||
float jerk_max, float dt);
|
||||
|
||||
void shape_accel_xy(const Vector3f& accel_input, Vector3f& accel,
|
||||
float accel_max, float tc, float dt);
|
||||
float jerk_max, float dt);
|
||||
|
||||
/* shape_vel calculates a jerk limited path from the current velocity and acceleration to an input velocity.
|
||||
The function takes the current velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
|
@ -69,14 +69,14 @@ void shape_accel_xy(const Vector3f& accel_input, Vector3f& accel,
|
|||
The time constant must be positive.
|
||||
The function alters the variable accel to follow a jerk limited kinematic path to vel_input and accel_input
|
||||
*/
|
||||
void shape_vel_accel(const float vel_input, const float accel_input,
|
||||
const float vel, float& accel,
|
||||
const float vel_min, const float vel_max,
|
||||
const float accel_min, const float accel_max,
|
||||
const float tc, const float dt);
|
||||
void shape_vel_accel_xy(const Vector2f &vel_input, const Vector2f& accel_input,
|
||||
void shape_vel_accel(float vel_input, float accel_input,
|
||||
float vel, float& accel,
|
||||
float accel_min, float accel_max,
|
||||
float jerk_max, float dt, bool limit_total_accel);
|
||||
|
||||
void shape_vel_accel_xy(const Vector2f &vel_input1, const Vector2f& accel_input,
|
||||
const Vector2f& vel, Vector2f& accel,
|
||||
const float vel_max, const float accel_max, const float tc, const float dt);
|
||||
float accel_max, float jerk_max, float dt, bool limit_total_accel);
|
||||
|
||||
/* shape_pos_vel calculate a jerk limited path from the current position, velocity and acceleration to an input position and velocity.
|
||||
The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
|
@ -89,13 +89,16 @@ void shape_vel_accel_xy(const Vector2f &vel_input, const Vector2f& accel_input,
|
|||
The time constant must be positive.
|
||||
The function alters the variable accel to follow a jerk limited kinematic path to pos_input, vel_input and accel_input
|
||||
*/
|
||||
void shape_pos_vel_accel(const postype_t pos_input, const float vel_input, const float accel_input,
|
||||
const postype_t pos, const float vel, float& accel,
|
||||
const float vel_correction_max, const float vel_min, const float vel_max,
|
||||
const float accel_min, const float accel_max, const float tc, const float dt);
|
||||
void shape_pos_vel_accel(const postype_t pos_input, float vel_input, float accel_input,
|
||||
const postype_t pos, float vel, float& accel,
|
||||
float vel_min, float vel_max,
|
||||
float accel_min, float accel_max,
|
||||
float jerk_max, float dt, bool limit_total_accel);
|
||||
|
||||
void shape_pos_vel_accel_xy(const Vector2p& pos_input, const Vector2f& vel_input, const Vector2f& accel_input,
|
||||
const Vector2p& pos, const Vector2f& vel, Vector2f& accel,
|
||||
const float vel_correction_max, const float vel_max, const float accel_max, const float tc, const float dt);
|
||||
float vel_max, float accel_max,
|
||||
float jerk_max, float dt, bool limit_total_accel);
|
||||
|
||||
// proportional controller with piecewise sqrt sections to constrain second derivative
|
||||
float sqrt_controller(float error, float p, float second_ord_lim, float dt);
|
||||
|
|
Loading…
Reference in New Issue