Marco's updated Motor testing code

This commit is contained in:
Jason Short 2012-02-15 10:49:35 -08:00
parent f9296796fd
commit efb451e475
6 changed files with 434 additions and 353 deletions

View File

@ -167,54 +167,54 @@ static void output_motor_test()
motor_out[MOT_5] = g.rc_3.radio_min;
motor_out[MOT_6] = g.rc_3.radio_min;
bool right = (g.rc_1.control_in > 3000);
bool left = (g.rc_1.control_in < -3000);
bool front = (g.rc_2.control_in < -3000);
bool back = (g.rc_2.control_in > 3000);
bool right = (g.rc_1.control_in > 3000);
bool left = (g.rc_1.control_in < -3000);
bool front = (g.rc_2.control_in < -3000);
bool back = (g.rc_2.control_in > 3000);
if(g.frame_orientation == X_FRAME){
if ( right && !( front || back ) )
if(right && !(front || back))
motor_out[MOT_1] += 150; // Right
if ( left && !(front || back ) )
if(left && !(front || back))
motor_out[MOT_2] += 150; // Left
if ( back ) {
if ( left )
motor_out[MOT_6] += 150;
if ( right )
motor_out[MOT_4] += 150;
if(back){
if(left)
motor_out[MOT_6] += 150;
if(right)
motor_out[MOT_4] += 150;
}
if ( front ) {
if ( left )
motor_out[MOT_3] += 150;
if ( right )
motor_out[MOT_5] += 150;
if(front){
if(left)
motor_out[MOT_3] += 150;
if(right)
motor_out[MOT_5] += 150;
}
} else { /* PLUS_FRAME */
if ( front && !( left || right ) )
motor_out[MOT_1] += 150;
if(front && !(left || right))
motor_out[MOT_1] += 150;
if ( back && !( left || right ) )
motor_out[MOT_2] += 150;
if(back && !(left || right))
motor_out[MOT_2] += 150;
if ( left ) {
if ( front )
motor_out[MOT_5] += 150;
if ( back )
motor_out[MOT_3] += 150;
}
if(left){
if(front)
motor_out[MOT_5] += 150;
if(back)
motor_out[MOT_3] += 150;
}
if ( right ) {
if ( front )
motor_out[MOT_4] += 150;
if ( back )
motor_out[MOT_6] += 150;
}
if(right){
if(front)
motor_out[MOT_4] += 150;
if(back)
motor_out[MOT_6] += 150;
}
}

View File

@ -5,21 +5,21 @@
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4)
| _BV(MOT_5) | _BV(MOT_6) | _BV(MOT_7) | _BV(MOT_8) );
APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4)
| _BV(MOT_5) | _BV(MOT_6) | _BV(MOT_7) | _BV(MOT_8));
#endif
}
static void motors_output_enable()
{
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(MOT_5);
APM_RC.enable_out(MOT_6);
APM_RC.enable_out(MOT_7);
APM_RC.enable_out(MOT_8);
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(MOT_5);
APM_RC.enable_out(MOT_6);
APM_RC.enable_out(MOT_7);
APM_RC.enable_out(MOT_8);
}
static void output_motors_armed()
@ -40,16 +40,16 @@ static void output_motors_armed()
g.rc_4.calc_pwm();
if(g.frame_orientation == X_FRAME){
roll_out = (float)g.rc_1.pwm_out * 0.4;
pitch_out = (float)g.rc_2.pwm_out * 0.4;
roll_out = (float)g.rc_1.pwm_out * 0.4;
pitch_out = (float)g.rc_2.pwm_out * 0.4;
//Front side
motor_out[MOT_1] = g.rc_3.radio_out + g.rc_2.pwm_out - roll_out; // CW FRONT RIGHT
motor_out[MOT_1] = g.rc_3.radio_out + g.rc_2.pwm_out - roll_out; // CW FRONT RIGHT
motor_out[MOT_5] = g.rc_3.radio_out + g.rc_2.pwm_out + roll_out; // CCW FRONT LEFT
//Back side
motor_out[MOT_2] = g.rc_3.radio_out - g.rc_2.pwm_out + roll_out; // CW BACK LEFT
motor_out[MOT_4] = g.rc_3.radio_out - g.rc_2.pwm_out - roll_out; // CCW BACK RIGHT
motor_out[MOT_2] = g.rc_3.radio_out - g.rc_2.pwm_out + roll_out; // CW BACK LEFT
motor_out[MOT_4] = g.rc_3.radio_out - g.rc_2.pwm_out - roll_out; // CCW BACK RIGHT
//Left side
motor_out[MOT_7] = g.rc_3.radio_out + g.rc_1.pwm_out + pitch_out; // CW LEFT FRONT
@ -57,14 +57,14 @@ static void output_motors_armed()
//Right side
motor_out[MOT_8] = g.rc_3.radio_out - g.rc_1.pwm_out - pitch_out; // CW RIGHT BACK
motor_out[MOT_3] = g.rc_3.radio_out - g.rc_1.pwm_out + pitch_out; // CCW RIGHT FRONT
motor_out[MOT_3] = g.rc_3.radio_out - g.rc_1.pwm_out + pitch_out; // CCW RIGHT FRONT
}else if(g.frame_orientation == PLUS_FRAME){
roll_out = (float)g.rc_1.pwm_out * 0.71;
pitch_out = (float)g.rc_2.pwm_out * 0.71;
roll_out = (float)g.rc_1.pwm_out * 0.71;
pitch_out = (float)g.rc_2.pwm_out * 0.71;
//Front side
motor_out[MOT_1] = g.rc_3.radio_out + g.rc_2.pwm_out; // CW FRONT
motor_out[MOT_1] = g.rc_3.radio_out + g.rc_2.pwm_out; // CW FRONT
motor_out[MOT_3] = g.rc_3.radio_out - roll_out + pitch_out; // CCW FRONT RIGHT
motor_out[MOT_5] = g.rc_3.radio_out + roll_out + pitch_out; // CCW FRONT LEFT
@ -75,9 +75,9 @@ static void output_motors_armed()
motor_out[MOT_8] = g.rc_3.radio_out - g.rc_1.pwm_out; // CW RIGHT
//Back side
motor_out[MOT_2] = g.rc_3.radio_out - g.rc_2.pwm_out; // CW BACK
motor_out[MOT_4] = g.rc_3.radio_out - roll_out - pitch_out; // CCW BACK RIGHT
motor_out[MOT_6] = g.rc_3.radio_out + roll_out - pitch_out; // CCW BACK LEFT
motor_out[MOT_2] = g.rc_3.radio_out - g.rc_2.pwm_out; // CW BACK
motor_out[MOT_4] = g.rc_3.radio_out - roll_out - pitch_out; // CCW BACK RIGHT
motor_out[MOT_6] = g.rc_3.radio_out + roll_out - pitch_out; // CCW BACK LEFT
}else if(g.frame_orientation == V_FRAME){
@ -95,63 +95,63 @@ static void output_motors_armed()
pitch_out4 = (float)g.rc_2.pwm_out * 0.98;
//Front side
motor_out[MOT_7] = g.rc_3.radio_out + g.rc_2.pwm_out - roll_out; // CW FRONT RIGHT
motor_out[MOT_7] = g.rc_3.radio_out + g.rc_2.pwm_out - roll_out; // CW FRONT RIGHT
motor_out[MOT_5] = g.rc_3.radio_out + g.rc_2.pwm_out + roll_out; // CCW FRONT LEFT
//Left side
motor_out[MOT_1] = g.rc_3.radio_out + g.rc_1.pwm_out + pitch_out2; // CW LEFT FRONT
motor_out[MOT_1] = g.rc_3.radio_out + g.rc_1.pwm_out + pitch_out2; // CW LEFT FRONT
motor_out[MOT_3] = g.rc_3.radio_out + g.rc_1.pwm_out - pitch_out3; // CCW LEFT BACK
//Right side
motor_out[MOT_2] = g.rc_3.radio_out - g.rc_1.pwm_out - pitch_out3; // CW RIGHT BACK
motor_out[MOT_2] = g.rc_3.radio_out - g.rc_1.pwm_out - pitch_out3; // CW RIGHT BACK
motor_out[MOT_6] = g.rc_3.radio_out - g.rc_1.pwm_out + pitch_out2; // CCW RIGHT FRONT
//Back side
motor_out[MOT_8] = g.rc_3.radio_out - g.rc_2.pwm_out + roll_out4; // CW BACK LEFT
motor_out[MOT_4] = g.rc_3.radio_out - g.rc_2.pwm_out - roll_out4; // CCW BACK RIGHT
motor_out[MOT_8] = g.rc_3.radio_out - g.rc_2.pwm_out + roll_out4; // CW BACK LEFT
motor_out[MOT_4] = g.rc_3.radio_out - g.rc_2.pwm_out - roll_out4; // CCW BACK RIGHT
}
// Yaw
motor_out[MOT_3] += g.rc_4.pwm_out; // CCW
motor_out[MOT_4] += g.rc_4.pwm_out; // CCW
motor_out[MOT_3] += g.rc_4.pwm_out; // CCW
motor_out[MOT_4] += g.rc_4.pwm_out; // CCW
motor_out[MOT_5] += g.rc_4.pwm_out; // CCW
motor_out[MOT_6] += g.rc_4.pwm_out; // CCW
motor_out[MOT_1] -= g.rc_4.pwm_out; // CW
motor_out[MOT_2] -= g.rc_4.pwm_out; // CW
motor_out[MOT_1] -= g.rc_4.pwm_out; // CW
motor_out[MOT_2] -= g.rc_4.pwm_out; // CW
motor_out[MOT_7] -= g.rc_4.pwm_out; // CW
motor_out[MOT_8] -= g.rc_4.pwm_out; // CW
// TODO add stability patch
motor_out[MOT_1] = min(motor_out[MOT_1], out_max);
motor_out[MOT_2] = min(motor_out[MOT_2], out_max);
motor_out[MOT_3] = min(motor_out[MOT_3], out_max);
motor_out[MOT_4] = min(motor_out[MOT_4], out_max);
motor_out[MOT_5] = min(motor_out[MOT_5], out_max);
motor_out[MOT_6] = min(motor_out[MOT_6], out_max);
motor_out[MOT_7] = min(motor_out[MOT_7], out_max);
motor_out[MOT_8] = min(motor_out[MOT_8], out_max);
motor_out[MOT_1] = min(motor_out[MOT_1], out_max);
motor_out[MOT_2] = min(motor_out[MOT_2], out_max);
motor_out[MOT_3] = min(motor_out[MOT_3], out_max);
motor_out[MOT_4] = min(motor_out[MOT_4], out_max);
motor_out[MOT_5] = min(motor_out[MOT_5], out_max);
motor_out[MOT_6] = min(motor_out[MOT_6], out_max);
motor_out[MOT_7] = min(motor_out[MOT_7], out_max);
motor_out[MOT_8] = min(motor_out[MOT_8], out_max);
// limit output so motors don't stop
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
motor_out[MOT_5] = max(motor_out[MOT_5], out_min);
motor_out[MOT_6] = max(motor_out[MOT_6], out_min);
motor_out[MOT_7] = max(motor_out[MOT_7], out_min);
motor_out[MOT_8] = max(motor_out[MOT_8], out_min);
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
motor_out[MOT_5] = max(motor_out[MOT_5], out_min);
motor_out[MOT_6] = max(motor_out[MOT_6], out_min);
motor_out[MOT_7] = max(motor_out[MOT_7], out_min);
motor_out[MOT_8] = max(motor_out[MOT_8], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
motor_out[MOT_5] = g.rc_3.radio_min;
motor_out[MOT_6] = g.rc_3.radio_min;
@ -162,8 +162,8 @@ static void output_motors_armed()
// this filter slows the acceleration of motors vs the deceleration
// Idea by Denny Rowland to help with his Yaw issue
for(int8_t m = 0; m <= 8; m++ ) {
int c = ch_of_mot(m);
for(int8_t m = 0; m <= 8; m++){
int c = ch_of_mot(m);
if(motor_filtered[c] < motor_out[c]){
motor_filtered[c] = (motor_out[c] + motor_filtered[c]) / 2;
}else{
@ -198,7 +198,7 @@ static void output_motors_disarmed()
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 11; i++) {
for (unsigned char i = 0; i < 11; i++){
motor_out[i] = g.rc_3.radio_min;
}
@ -216,75 +216,110 @@ static void output_motors_disarmed()
static void output_motor_test()
{
if( g.frame_orientation == X_FRAME || g.frame_orientation == PLUS_FRAME )
{
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100);
delay(1000);
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
motor_out[MOT_5] = g.rc_3.radio_min;
motor_out[MOT_6] = g.rc_3.radio_min;
motor_out[MOT_7] = g.rc_3.radio_min;
motor_out[MOT_8] = g.rc_3.radio_min;
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100);
delay(1000);
if(g.frame_orientation == X_FRAME || g.frame_orientation == PLUS_FRAME){
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min);
delay(4000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100);
delay(300);
}
if( g.frame_orientation == V_FRAME )
{
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min + 100);
delay(1000);
if(g.frame_orientation == V_FRAME){
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min);
delay(4000);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100);
delay(300);
}
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]);
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
APM_RC.OutputCh(MOT_5, motor_out[MOT_5]);
APM_RC.OutputCh(MOT_6, motor_out[MOT_6]);
APM_RC.OutputCh(MOT_7, motor_out[MOT_7]);
APM_RC.OutputCh(MOT_8, motor_out[MOT_8]);
}
#endif

View File

@ -5,21 +5,21 @@
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4)
| _BV(MOT_5) | _BV(MOT_6) | _BV(MOT_7) | _BV(MOT_8) );
APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4)
| _BV(MOT_5) | _BV(MOT_6) | _BV(MOT_7) | _BV(MOT_8));
#endif
}
static void motors_output_enable()
{
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(MOT_5);
APM_RC.enable_out(MOT_6);
APM_RC.enable_out(MOT_7);
APM_RC.enable_out(MOT_8);
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(MOT_5);
APM_RC.enable_out(MOT_6);
APM_RC.enable_out(MOT_7);
APM_RC.enable_out(MOT_8);
}
static void output_motors_armed()
@ -47,63 +47,62 @@ static void output_motors_armed()
motor_out[MOT_2] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out + pitch_out); // APM2 OUT2 APM1 OUT2 FRONT LEFT CW TOP
motor_out[MOT_3] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out - pitch_out); // APM2 OUT3 APM1 OUT3 BACK LEFT CCW TOP
motor_out[MOT_4] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out - pitch_out); // APM2 OUT4 APM1 OUT4 BACK RIGHT CW TOP
motor_out[MOT_5] = g.rc_3.radio_out + roll_out + pitch_out; // APM2 OUT5 APM1 OUT7 FRONT LEFT CCW BOTTOM
motor_out[MOT_6] = g.rc_3.radio_out - roll_out + pitch_out; // APM2 OUT6 APM1 OUT8 FRONT RIGHT CW BOTTOM
motor_out[MOT_7] = g.rc_3.radio_out - roll_out - pitch_out; // APM2 OUT7 APM1 OUT10 BACK RIGHT CCW BOTTOM
motor_out[MOT_8] = g.rc_3.radio_out + roll_out - pitch_out; // APM2 OUT8 APM1 OUT11 BACK LEFT CW BOTTOM
motor_out[MOT_5] = g.rc_3.radio_out + roll_out + pitch_out; // APM2 OUT5 APM1 OUT7 FRONT LEFT CCW BOTTOM
motor_out[MOT_6] = g.rc_3.radio_out - roll_out + pitch_out; // APM2 OUT6 APM1 OUT8 FRONT RIGHT CW BOTTOM
motor_out[MOT_7] = g.rc_3.radio_out - roll_out - pitch_out; // APM2 OUT7 APM1 OUT10 BACK RIGHT CCW BOTTOM
motor_out[MOT_8] = g.rc_3.radio_out + roll_out - pitch_out; // APM2 OUT8 APM1 OUT11 BACK LEFT CW BOTTOM
}else{
roll_out = g.rc_1.pwm_out;
pitch_out = g.rc_2.pwm_out;
roll_out = g.rc_1.pwm_out;
pitch_out = g.rc_2.pwm_out;
motor_out[MOT_1] = (g.rc_3.radio_out * g.top_bottom_ratio) + pitch_out; //APM2 OUT1 APM1 OUT1 FRONT CCW TOP
motor_out[MOT_2] = (g.rc_3.radio_out * g.top_bottom_ratio) + roll_out; //APM2 OUT2 APM1 OUT2 LEFT CW TOP
motor_out[MOT_3] = (g.rc_3.radio_out * g.top_bottom_ratio) - pitch_out; //APM2 OUT3 APM1 OUT3 BACK CCW TOP
motor_out[MOT_4] = (g.rc_3.radio_out * g.top_bottom_ratio) - roll_out; //APM2 OUT4 APM1 OUT4 RIGHT CW TOP
motor_out[MOT_5] = g.rc_3.radio_out + roll_out; //APM2 OUT5 APM1 OUT7 LEFT CCW BOTTOM
motor_out[MOT_6] = g.rc_3.radio_out + pitch_out; //APM2 OUT6 APM1 OUT8 FRONT CW BOTTOM
motor_out[MOT_7] = g.rc_3.radio_out - roll_out; //APM2 OUT7 APM1 OUT10 RIGHT CCW BOTTOM
motor_out[MOT_8] = g.rc_3.radio_out - pitch_out; //APM2 OUT8 APM1 OUT11 BACK CW BOTTOM
motor_out[MOT_1] = (g.rc_3.radio_out * g.top_bottom_ratio) + pitch_out; // APM2 OUT1 APM1 OUT1 FRONT CCW TOP
motor_out[MOT_2] = (g.rc_3.radio_out * g.top_bottom_ratio) + roll_out; // APM2 OUT2 APM1 OUT2 LEFT CW TOP
motor_out[MOT_3] = (g.rc_3.radio_out * g.top_bottom_ratio) - pitch_out; // APM2 OUT3 APM1 OUT3 BACK CCW TOP
motor_out[MOT_4] = (g.rc_3.radio_out * g.top_bottom_ratio) - roll_out; // APM2 OUT4 APM1 OUT4 RIGHT CW TOP
motor_out[MOT_5] = g.rc_3.radio_out + roll_out; // APM2 OUT5 APM1 OUT7 LEFT CCW BOTTOM
motor_out[MOT_6] = g.rc_3.radio_out + pitch_out; // APM2 OUT6 APM1 OUT8 FRONT CW BOTTOM
motor_out[MOT_7] = g.rc_3.radio_out - roll_out; // APM2 OUT7 APM1 OUT10 RIGHT CCW BOTTOM
motor_out[MOT_8] = g.rc_3.radio_out - pitch_out; // APM2 OUT8 APM1 OUT11 BACK CW BOTTOM
// Yaw
motor_out[MOT_1] += g.rc_4.pwm_out; // CCW
motor_out[MOT_3] += g.rc_4.pwm_out; // CCW
motor_out[MOT_5] += g.rc_4.pwm_out; // CCW
motor_out[MOT_7] += g.rc_4.pwm_out; // CCW
// Yaw
motor_out[MOT_1] += g.rc_4.pwm_out; // CCW
motor_out[MOT_3] += g.rc_4.pwm_out; // CCW
motor_out[MOT_5] += g.rc_4.pwm_out; // CCW
motor_out[MOT_7] += g.rc_4.pwm_out; // CCW
motor_out[MOT_2] -= g.rc_4.pwm_out; // CW
motor_out[MOT_4] -= g.rc_4.pwm_out; // CW
motor_out[MOT_6] -= g.rc_4.pwm_out; // CW
motor_out[MOT_8] -= g.rc_4.pwm_out; // CW
motor_out[MOT_2] -= g.rc_4.pwm_out; // CW
motor_out[MOT_4] -= g.rc_4.pwm_out; // CW
motor_out[MOT_6] -= g.rc_4.pwm_out; // CW
motor_out[MOT_8] -= g.rc_4.pwm_out; // CW
}
// TODO add stability patch
motor_out[MOT_1] = min(motor_out[MOT_1], out_max);
motor_out[MOT_2] = min(motor_out[MOT_2], out_max);
motor_out[MOT_3] = min(motor_out[MOT_3], out_max);
motor_out[MOT_4] = min(motor_out[MOT_4], out_max);
motor_out[MOT_5] = min(motor_out[MOT_5], out_max);
motor_out[MOT_6] = min(motor_out[MOT_6], out_max);
motor_out[MOT_7] = min(motor_out[MOT_7], out_max);
motor_out[MOT_8] = min(motor_out[MOT_8], out_max);
motor_out[MOT_1] = min(motor_out[MOT_1], out_max);
motor_out[MOT_2] = min(motor_out[MOT_2], out_max);
motor_out[MOT_3] = min(motor_out[MOT_3], out_max);
motor_out[MOT_4] = min(motor_out[MOT_4], out_max);
motor_out[MOT_5] = min(motor_out[MOT_5], out_max);
motor_out[MOT_6] = min(motor_out[MOT_6], out_max);
motor_out[MOT_7] = min(motor_out[MOT_7], out_max);
motor_out[MOT_8] = min(motor_out[MOT_8], out_max);
// limit output so motors don't stop
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
motor_out[MOT_5] = max(motor_out[MOT_5], out_min);
motor_out[MOT_6] = max(motor_out[MOT_6], out_min);
motor_out[MOT_7] = max(motor_out[MOT_7], out_min);
motor_out[MOT_8] = max(motor_out[MOT_8], out_min);
motor_out[MOT_6] = max(motor_out[MOT_6], out_min);
motor_out[MOT_7] = max(motor_out[MOT_7], out_min);
motor_out[MOT_8] = max(motor_out[MOT_8], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
motor_out[MOT_5] = g.rc_3.radio_min;
motor_out[MOT_6] = g.rc_3.radio_min;
@ -114,8 +113,8 @@ static void output_motors_armed()
// this filter slows the acceleration of motors vs the deceleration
// Idea by Denny Rowland to help with his Yaw issue
for(int8_t m = 0; m <= 8; m++ ) {
int i = ch_of_mot(m);
for(int8_t m = 0; m <= 8; m++){
int i = ch_of_mot(m);
if(motor_filtered[i] < motor_out[i]){
motor_filtered[i] = (motor_out[i] + motor_filtered[i]) / 2;
}else{
@ -150,7 +149,7 @@ static void output_motors_disarmed()
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 11; i++) {
for (unsigned char i = 0; i < 11; i++){
motor_out[i] = g.rc_3.radio_min;
}
@ -167,37 +166,62 @@ static void output_motors_disarmed()
static void output_motor_test()
{
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100);
delay(1000);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100);
delay(1000);
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
motor_out[MOT_5] = g.rc_3.radio_min;
motor_out[MOT_6] = g.rc_3.radio_min;
motor_out[MOT_7] = g.rc_3.radio_min;
motor_out[MOT_8] = g.rc_3.radio_min;
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100);
delay(1000);
}
delay(5000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_7, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_8, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]);
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
APM_RC.OutputCh(MOT_5, motor_out[MOT_5]);
APM_RC.OutputCh(MOT_6, motor_out[MOT_6]);
APM_RC.OutputCh(MOT_7, motor_out[MOT_7]);
APM_RC.OutputCh(MOT_8, motor_out[MOT_8]);
}
#endif

View File

@ -5,16 +5,16 @@
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4) );
APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4));
#endif
}
static void motors_output_enable()
{
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
}
static void output_motors_armed()
@ -41,11 +41,11 @@ static void output_motors_armed()
pitch_out = g.rc_2.pwm_out * .707;
// left
motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT
motor_out[MOT_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK
motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT
motor_out[MOT_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK
// right
motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT
motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT
motor_out[MOT_4] = g.rc_3.radio_out - roll_out - pitch_out; // BACK
}else{
@ -54,54 +54,54 @@ static void output_motors_armed()
pitch_out = g.rc_2.pwm_out;
// right motor
motor_out[MOT_1] = g.rc_3.radio_out - roll_out;
motor_out[MOT_1] = g.rc_3.radio_out - roll_out;
// left motor
motor_out[MOT_2] = g.rc_3.radio_out + roll_out;
motor_out[MOT_2] = g.rc_3.radio_out + roll_out;
// front motor
motor_out[MOT_3] = g.rc_3.radio_out + pitch_out;
motor_out[MOT_3] = g.rc_3.radio_out + pitch_out;
// back motor
motor_out[MOT_4] = g.rc_3.radio_out - pitch_out;
}
// Yaw input
motor_out[MOT_1] += g.rc_4.pwm_out; // CCW
motor_out[MOT_2] += g.rc_4.pwm_out; // CCW
motor_out[MOT_3] -= g.rc_4.pwm_out; // CW
motor_out[MOT_4] -= g.rc_4.pwm_out; // CW
motor_out[MOT_1] += g.rc_4.pwm_out; // CCW
motor_out[MOT_2] += g.rc_4.pwm_out; // CCW
motor_out[MOT_3] -= g.rc_4.pwm_out; // CW
motor_out[MOT_4] -= g.rc_4.pwm_out; // CW
/* We need to clip motor output at out_max. When cipping a motors
* output we also need to compensate for the instability by
* lowering the opposite motor by the same proportion. This
* ensures that we retain control when one or more of the motors
* is at its maximum output
*/
for (int i=MOT_1; i<=MOT_4; i++) {
if (motor_out[i] > out_max) {
// note that i^1 is the opposite motor
motor_out[i^1] -= motor_out[i] - out_max;
motor_out[i] = out_max;
}
}
* output we also need to compensate for the instability by
* lowering the opposite motor by the same proportion. This
* ensures that we retain control when one or more of the motors
* is at its maximum output
*/
for (int i = MOT_1; i <= MOT_4; i++){
if(motor_out[i] > out_max){
// note that i^1 is the opposite motor
motor_out[i ^ 1] -= motor_out[i] - out_max;
motor_out[i] = out_max;
}
}
// limit output so motors don't stop
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
}
#endif
// this filter slows the acceleration of motors vs the deceleration
// Idea by Denny Rowland to help with his Yaw issue
for(int8_t i=MOT_1; i <= MOT_4; i++ ) {
for(int8_t i = MOT_1; i <= MOT_4; i++){
if(motor_filtered[i] < motor_out[i]){
motor_filtered[i] = (motor_out[i] + motor_filtered[i]) / 2;
}else{
@ -133,7 +133,7 @@ static void output_motors_disarmed()
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
for (unsigned char i = 0; i < 8; i++){
motor_out[i] = g.rc_3.radio_min;
}
@ -164,43 +164,49 @@ static void output_motor_test()
if(g.frame_orientation == X_FRAME){
// 31
// 24
if(g.rc_1.control_in > 3000){
motor_out[MOT_1] += 100;
motor_out[MOT_4] += 100;
}
if(g.rc_1.control_in < -3000){
motor_out[MOT_2] += 100;
motor_out[MOT_3] += 100;
}
APM_RC.OutputCh(MOT_3, g.rc_2.radio_min);
delay(4000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(300);
if(g.rc_2.control_in > 3000){
motor_out[MOT_2] += 100;
motor_out[MOT_4] += 100;
}
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_4, g.rc_1.radio_min + 100);
delay(300);
if(g.rc_2.control_in < -3000){
motor_out[MOT_1] += 100;
motor_out[MOT_3] += 100;
}
APM_RC.OutputCh(MOT_4, g.rc_1.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_2, g.rc_4.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_2, g.rc_4.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_3, g.rc_2.radio_min + 100);
delay(300);
}else{
// 3
// 2 1
// 4
if(g.rc_1.control_in > 3000)
motor_out[MOT_1] += 100;
if(g.rc_1.control_in < -3000)
motor_out[MOT_2] += 100;
APM_RC.OutputCh(MOT_3, g.rc_2.radio_min);
delay(4000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(300);
if(g.rc_2.control_in > 3000)
motor_out[MOT_4] += 100;
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_2, g.rc_1.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_2, g.rc_1.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_4, g.rc_4.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_4, g.rc_4.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_3, g.rc_2.radio_min + 100);
delay(300);
if(g.rc_2.control_in < -3000)
motor_out[MOT_3] += 100;
}
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);

View File

@ -4,16 +4,16 @@
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_4) );
APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_4));
#endif
}
static void motors_output_enable()
{
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(CH_TRI_YAW);
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(CH_TRI_YAW);
}
@ -45,19 +45,19 @@ static void output_motors_armed()
//motor_out[MOT_4] += (float)(abs(g.rc_4.control_in)) * .013;
// Tridge's stability patch
if (motor_out[MOT_1] > out_max) {
if(motor_out[MOT_1] > out_max){
motor_out[MOT_2] -= (motor_out[MOT_1] - out_max) >> 1;
motor_out[MOT_4] -= (motor_out[MOT_1] - out_max) >> 1;
motor_out[MOT_1] = out_max;
}
if (motor_out[MOT_2] > out_max) {
if(motor_out[MOT_2] > out_max){
motor_out[MOT_1] -= (motor_out[MOT_2] - out_max) >> 1;
motor_out[MOT_4] -= (motor_out[MOT_2] - out_max) >> 1;
motor_out[MOT_2] = out_max;
}
if (motor_out[MOT_4] > out_max) {
if(motor_out[MOT_4] > out_max){
motor_out[MOT_1] -= (motor_out[MOT_4] - out_max) >> 1;
motor_out[MOT_2] -= (motor_out[MOT_4] - out_max) >> 1;
motor_out[MOT_4] = out_max;
@ -97,7 +97,7 @@ static void output_motors_disarmed()
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
for (unsigned char i = 0; i < 8; i++){
motor_out[i] = g.rc_3.radio_min;
}
@ -113,18 +113,20 @@ static void output_motor_test()
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
APM_RC.OutputCh(MOT_2, g.rc_2.radio_min);
delay(4000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(300);
if(g.rc_1.control_in > 3000){ // right
motor_out[MOT_1] += 100;
}
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_4, g.rc_1.radio_min + 100);
delay(300);
if(g.rc_1.control_in < -3000){ // left
motor_out[MOT_2] += 100;
}
if(g.rc_2.control_in > 3000){ // back
motor_out[MOT_4] += 100;
}
APM_RC.OutputCh(MOT_4, g.rc_1.radio_min);
delay(2000);
APM_RC.OutputCh(MOT_2, g.rc_4.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);

View File

@ -7,19 +7,19 @@
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4)
| _BV(MOT_5) | _BV(MOT_6) );
APM_RC.SetFastOutputChannels(_BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4)
| _BV(MOT_5) | _BV(MOT_6));
#endif
}
static void motors_output_enable()
{
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(MOT_5);
APM_RC.enable_out(MOT_6);
APM_RC.enable_out(MOT_1);
APM_RC.enable_out(MOT_2);
APM_RC.enable_out(MOT_3);
APM_RC.enable_out(MOT_4);
APM_RC.enable_out(MOT_5);
APM_RC.enable_out(MOT_6);
}
static void output_motors_armed()
@ -40,41 +40,41 @@ static void output_motors_armed()
// Multi-Wii Mix
//left
motor_out[MOT_2] = (g.rc_3.radio_out * g.top_bottom_ratio) + g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // LEFT TOP - CW
motor_out[MOT_3] = g.rc_3.radio_out + g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // BOTTOM_LEFT - CCW
motor_out[MOT_2] = (g.rc_3.radio_out * g.top_bottom_ratio) + g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // LEFT TOP - CW
motor_out[MOT_3] = g.rc_3.radio_out + g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // BOTTOM_LEFT - CCW
//right
motor_out[MOT_5] = (g.rc_3.radio_out * g.top_bottom_ratio) - g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // RIGHT TOP - CW
motor_out[MOT_1] = g.rc_3.radio_out - g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // BOTTOM_RIGHT - CCW
motor_out[MOT_5] = (g.rc_3.radio_out * g.top_bottom_ratio) - g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // RIGHT TOP - CW
motor_out[MOT_1] = g.rc_3.radio_out - g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // BOTTOM_RIGHT - CCW
//back
motor_out[MOT_6] = (g.rc_3.radio_out * g.top_bottom_ratio) - (g.rc_2.pwm_out * 4 / 3); // REAR TOP - CCW
motor_out[MOT_4] = g.rc_3.radio_out - (g.rc_2.pwm_out * 4 / 3); // BOTTOM_REAR - CW
motor_out[MOT_6] = (g.rc_3.radio_out * g.top_bottom_ratio) - (g.rc_2.pwm_out * 4 / 3); // REAR TOP - CCW
motor_out[MOT_4] = g.rc_3.radio_out - (g.rc_2.pwm_out * 4 / 3); // BOTTOM_REAR - CW
//left
motor_out[MOT_2] -= YAW_DIRECTION * g.rc_4.pwm_out; // LEFT TOP - CW
motor_out[MOT_3] += YAW_DIRECTION * g.rc_4.pwm_out; // LEFT BOTTOM - CCW
motor_out[MOT_2] -= YAW_DIRECTION * g.rc_4.pwm_out; // LEFT TOP - CW
motor_out[MOT_3] += YAW_DIRECTION * g.rc_4.pwm_out; // LEFT BOTTOM - CCW
//right
motor_out[MOT_5] -= YAW_DIRECTION * g.rc_4.pwm_out; // RIGHT TOP - CW
motor_out[MOT_1] += YAW_DIRECTION * g.rc_4.pwm_out; // RIGHT BOTTOM - CCW
motor_out[MOT_5] -= YAW_DIRECTION * g.rc_4.pwm_out; // RIGHT TOP - CW
motor_out[MOT_1] += YAW_DIRECTION * g.rc_4.pwm_out; // RIGHT BOTTOM - CCW
//back
motor_out[MOT_6] += YAW_DIRECTION * g.rc_4.pwm_out; // REAR TOP - CCW
motor_out[MOT_4] -= YAW_DIRECTION * g.rc_4.pwm_out; // REAR BOTTOM - CW
motor_out[MOT_6] += YAW_DIRECTION * g.rc_4.pwm_out; // REAR TOP - CCW
motor_out[MOT_4] -= YAW_DIRECTION * g.rc_4.pwm_out; // REAR BOTTOM - CW
/*
int roll_out = (float)g.rc_1.pwm_out * .866;
int pitch_out = g.rc_2.pwm_out / 2;
int pitch_out = g.rc_2.pwm_out / 2;
//left
motor_out[MOT_2] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out + pitch_out); // CCW TOP
motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW
motor_out[MOT_2] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out + pitch_out); // CCW TOP
motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW
//right
motor_out[MOT_5] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out + pitch_out); // CCW TOP
motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // CW
motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // CW
//back
motor_out[MOT_6] = ((g.rc_3.radio_out * g.top_bottom_ratio) - g.rc_2.pwm_out); // CCW TOP
motor_out[MOT_4] = g.rc_3.radio_out - g.rc_2.pwm_out; // CW
motor_out[MOT_6] = ((g.rc_3.radio_out * g.top_bottom_ratio) - g.rc_2.pwm_out); // CCW TOP
motor_out[MOT_4] = g.rc_3.radio_out - g.rc_2.pwm_out; // CW
// Yaw
//top
@ -85,7 +85,7 @@ static void output_motors_armed()
//bottom
motor_out[MOT_3] -= g.rc_4.pwm_out; // CW
motor_out[MOT_1] -= g.rc_4.pwm_out; // CW
motor_out[MOT_4] -= g.rc_4.pwm_out; // CW
motor_out[MOT_4] -= g.rc_4.pwm_out; // CW
*/
// TODO: add stability patch
@ -93,16 +93,16 @@ static void output_motors_armed()
motor_out[MOT_2] = min(motor_out[MOT_2], out_max);
motor_out[MOT_3] = min(motor_out[MOT_3], out_max);
motor_out[MOT_4] = min(motor_out[MOT_4], out_max);
motor_out[MOT_5] = min(motor_out[MOT_5], out_max);
motor_out[MOT_6] = min(motor_out[MOT_6], out_max);
motor_out[MOT_5] = min(motor_out[MOT_5], out_max);
motor_out[MOT_6] = min(motor_out[MOT_6], out_max);
// limit output so motors don't stop
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
motor_out[MOT_5] = max(motor_out[MOT_5], out_min);
motor_out[MOT_6] = max(motor_out[MOT_6], out_min);
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
motor_out[MOT_5] = max(motor_out[MOT_5], out_min);
motor_out[MOT_6] = max(motor_out[MOT_6], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
@ -118,8 +118,8 @@ static void output_motors_armed()
// this filter slows the acceleration of motors vs the deceleration
// Idea by Denny Rowland to help with his Yaw issue
for(int8_t m = 0; m <= 6; m++ ) {
int i = ch_of_mot(m);
for(int8_t m = 0; m <= 6; m++){
int i = ch_of_mot(m);
if(motor_filtered[i] < motor_out[i]){
motor_filtered[i] = (motor_out[i] + motor_filtered[i]) / 2;
}else{
@ -152,7 +152,7 @@ static void output_motors_disarmed()
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
for (unsigned char i = 0; i < 8; i++){
motor_out[i] = g.rc_3.radio_min;
}
@ -174,21 +174,35 @@ static void output_motor_test()
motor_out[MOT_5] = g.rc_3.radio_min;
motor_out[MOT_6] = g.rc_3.radio_min;
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
delay(5000);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100);
delay(300);
if(g.rc_1.control_in > 3000){ // right
motor_out[MOT_1] += 100;
motor_out[MOT_5] += 100;
}
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100);
delay(300);
if(g.rc_1.control_in < -3000){ // left
motor_out[MOT_2] += 100;
motor_out[MOT_3] += 100;
}
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100);
delay(300);
if(g.rc_2.control_in > 3000){ // back
motor_out[MOT_6] += 100;
motor_out[MOT_4] += 100;
}
APM_RC.OutputCh(MOT_6, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_5, g.rc_3.radio_min);
delay(3000);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100);
delay(300);
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);