AP_Periph: use native_millis for use in SITL

This commit is contained in:
bugobliterator 2020-09-13 00:27:27 +05:30 committed by Andrew Tridgell
parent 09a0d8d0c0
commit ed3683fce3
3 changed files with 30 additions and 30 deletions

View File

@ -157,7 +157,7 @@ void AP_Periph_FW::init()
msp_init(hal.uartD); msp_init(hal.uartD);
#endif #endif
start_ms = AP_HAL::millis(); start_ms = AP_HAL::native_millis();
} }
#if defined(HAL_PERIPH_NEOPIXEL_COUNT) && HAL_PERIPH_NEOPIXEL_COUNT == 8 #if defined(HAL_PERIPH_NEOPIXEL_COUNT) && HAL_PERIPH_NEOPIXEL_COUNT == 8
@ -170,7 +170,7 @@ static void update_rainbow()
if (rainbow_done) { if (rainbow_done) {
return; return;
} }
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
if (now-start_ms > 1500) { if (now-start_ms > 1500) {
rainbow_done = true; rainbow_done = true;
hal.rcout->set_serial_led_rgb_data(HAL_PERIPH_NEOPIXEL_CHAN, -1, 0, 0, 0); hal.rcout->set_serial_led_rgb_data(HAL_PERIPH_NEOPIXEL_CHAN, -1, 0, 0, 0);
@ -217,7 +217,7 @@ static void update_rainbow()
void AP_Periph_FW::update() void AP_Periph_FW::update()
{ {
static uint32_t last_led_ms; static uint32_t last_led_ms;
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
if (now - last_led_ms > 1000) { if (now - last_led_ms > 1000) {
last_led_ms = now; last_led_ms = now;
#ifdef HAL_GPIO_PIN_LED #ifdef HAL_GPIO_PIN_LED

View File

@ -132,7 +132,7 @@ static void handle_get_node_info(CanardInstance* ins,
uint8_t buffer[UAVCAN_PROTOCOL_GETNODEINFO_RESPONSE_MAX_SIZE] {}; uint8_t buffer[UAVCAN_PROTOCOL_GETNODEINFO_RESPONSE_MAX_SIZE] {};
uavcan_protocol_GetNodeInfoResponse pkt {}; uavcan_protocol_GetNodeInfoResponse pkt {};
node_status.uptime_sec = AP_HAL::millis() / 1000U; node_status.uptime_sec = AP_HAL::native_millis() / 1000U;
pkt.status = node_status; pkt.status = node_status;
pkt.software_version.major = AP::fwversion().major; pkt.software_version.major = AP::fwversion().major;
@ -384,7 +384,7 @@ static void handle_allocation_response(CanardInstance* ins, CanardRxTransfer* tr
{ {
// Rule C - updating the randomized time interval // Rule C - updating the randomized time interval
send_next_node_id_allocation_request_at_ms = send_next_node_id_allocation_request_at_ms =
AP_HAL::millis() + UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MIN_REQUEST_PERIOD_MS + AP_HAL::native_millis() + UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MIN_REQUEST_PERIOD_MS +
get_random_range(UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MAX_FOLLOWUP_DELAY_MS); get_random_range(UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MAX_FOLLOWUP_DELAY_MS);
if (transfer->source_node_id == CANARD_BROADCAST_NODE_ID) if (transfer->source_node_id == CANARD_BROADCAST_NODE_ID)
@ -462,7 +462,7 @@ static void handle_beep_command(CanardInstance* ins, CanardRxTransfer* transfer)
} }
fix_float16(req.frequency); fix_float16(req.frequency);
fix_float16(req.duration); fix_float16(req.duration);
buzzer_start_ms = AP_HAL::millis(); buzzer_start_ms = AP_HAL::native_millis();
buzzer_len_ms = req.duration*1000; buzzer_len_ms = req.duration*1000;
float volume = constrain_float(periph.g.buzz_volume/100.0, 0, 1); float volume = constrain_float(periph.g.buzz_volume/100.0, 0, 1);
hal.util->toneAlarm_set_buzzer_tone(req.frequency, volume, uint32_t(req.duration*1000)); hal.util->toneAlarm_set_buzzer_tone(req.frequency, volume, uint32_t(req.duration*1000));
@ -474,7 +474,7 @@ static void handle_beep_command(CanardInstance* ins, CanardRxTransfer* transfer)
static void can_buzzer_update(void) static void can_buzzer_update(void)
{ {
if (buzzer_start_ms != 0) { if (buzzer_start_ms != 0) {
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
if (now - buzzer_start_ms > buzzer_len_ms) { if (now - buzzer_start_ms > buzzer_len_ms) {
hal.util->toneAlarm_set_buzzer_tone(0, 0, 0); hal.util->toneAlarm_set_buzzer_tone(0, 0, 0);
buzzer_start_ms = 0; buzzer_start_ms = 0;
@ -585,7 +585,7 @@ static void can_safety_LED_update(void)
palWriteLine(HAL_GPIO_PIN_SAFE_LED, SAFE_LED_ON); palWriteLine(HAL_GPIO_PIN_SAFE_LED, SAFE_LED_ON);
break; break;
case ARDUPILOT_INDICATION_SAFETYSTATE_STATUS_SAFETY_ON: { case ARDUPILOT_INDICATION_SAFETYSTATE_STATUS_SAFETY_ON: {
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
if (now - last_update_ms > 100) { if (now - last_update_ms > 100) {
last_update_ms = now; last_update_ms = now;
static uint8_t led_counter; static uint8_t led_counter;
@ -614,7 +614,7 @@ static void can_safety_button_update(void)
{ {
static uint32_t last_update_ms; static uint32_t last_update_ms;
static uint8_t counter; static uint8_t counter;
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
// send at 10Hz when pressed // send at 10Hz when pressed
if (palReadLine(HAL_GPIO_PIN_SAFE_BUTTON) != HAL_SAFE_BUTTON_ON) { if (palReadLine(HAL_GPIO_PIN_SAFE_BUTTON) != HAL_SAFE_BUTTON_ON) {
counter = 0; counter = 0;
@ -802,7 +802,7 @@ static void processTx(void)
memcpy(txmsg.data, txf->data, 8); memcpy(txmsg.data, txf->data, 8);
txmsg.id = (txf->id | AP_HAL::CANFrame::FlagEFF); txmsg.id = (txf->id | AP_HAL::CANFrame::FlagEFF);
// push message with 1s timeout // push message with 1s timeout
if (can_iface.send(txmsg, AP_HAL::micros64() + 1000000, 0) > 0) { if (can_iface.send(txmsg, AP_HAL::native_micros64() + 1000000, 0) > 0) {
canardPopTxQueue(&canard); canardPopTxQueue(&canard);
fail_count = 0; fail_count = 0;
} else { } else {
@ -876,7 +876,7 @@ static void process1HzTasks(uint64_t timestamp_usec)
*/ */
{ {
uint8_t buffer[UAVCAN_PROTOCOL_NODESTATUS_MAX_SIZE]; uint8_t buffer[UAVCAN_PROTOCOL_NODESTATUS_MAX_SIZE];
node_status.uptime_sec = AP_HAL::millis() / 1000U; node_status.uptime_sec = AP_HAL::native_millis() / 1000U;
node_status.vendor_specific_status_code = hal.util->available_memory(); node_status.vendor_specific_status_code = hal.util->available_memory();
@ -919,12 +919,12 @@ static void process1HzTasks(uint64_t timestamp_usec)
#if 0 #if 0
// test code for watchdog reset // test code for watchdog reset
if (AP_HAL::millis() > 15000) { if (AP_HAL::native_millis() > 15000) {
while (true) ; while (true) ;
} }
#endif #endif
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
if (AP_HAL::millis() > 30000) { if (AP_HAL::native_millis() > 30000) {
// use RTC to mark that we have been running fine for // use RTC to mark that we have been running fine for
// 30s. This is used along with watchdog resets to ensure the // 30s. This is used along with watchdog resets to ensure the
// user has a chance to load a fixed firmware // user has a chance to load a fixed firmware
@ -941,7 +941,7 @@ static void can_wait_node_id(void)
uint8_t node_id_allocation_transfer_id = 0; uint8_t node_id_allocation_transfer_id = 0;
const uint32_t led_pattern = 0xAAAA; const uint32_t led_pattern = 0xAAAA;
uint8_t led_idx = 0; uint8_t led_idx = 0;
uint32_t last_led_change = AP_HAL::millis(); uint32_t last_led_change = AP_HAL::native_millis();
const uint32_t led_change_period = 50; const uint32_t led_change_period = 50;
while (canardGetLocalNodeID(&canard) == CANARD_BROADCAST_NODE_ID) while (canardGetLocalNodeID(&canard) == CANARD_BROADCAST_NODE_ID)
@ -949,18 +949,18 @@ static void can_wait_node_id(void)
printf("Waiting for dynamic node ID allocation... (pool %u)\n", pool_peak_percent()); printf("Waiting for dynamic node ID allocation... (pool %u)\n", pool_peak_percent());
stm32_watchdog_pat(); stm32_watchdog_pat();
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
send_next_node_id_allocation_request_at_ms = send_next_node_id_allocation_request_at_ms =
now + UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MIN_REQUEST_PERIOD_MS + now + UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MIN_REQUEST_PERIOD_MS +
get_random_range(UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MAX_FOLLOWUP_DELAY_MS); get_random_range(UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MAX_FOLLOWUP_DELAY_MS);
while (((now=AP_HAL::millis()) < send_next_node_id_allocation_request_at_ms) && while (((now=AP_HAL::native_millis()) < send_next_node_id_allocation_request_at_ms) &&
(canardGetLocalNodeID(&canard) == CANARD_BROADCAST_NODE_ID)) (canardGetLocalNodeID(&canard) == CANARD_BROADCAST_NODE_ID))
{ {
processTx(); processTx();
processRx(); processRx();
canardCleanupStaleTransfers(&canard, AP_HAL::micros64()); canardCleanupStaleTransfers(&canard, AP_HAL::native_micros64());
stm32_watchdog_pat(); stm32_watchdog_pat();
if (now - last_led_change > led_change_period) { if (now - last_led_change > led_change_period) {
@ -1034,7 +1034,7 @@ void AP_Periph_FW::can_start()
{ {
node_status.health = UAVCAN_PROTOCOL_NODESTATUS_HEALTH_OK; node_status.health = UAVCAN_PROTOCOL_NODESTATUS_HEALTH_OK;
node_status.mode = UAVCAN_PROTOCOL_NODESTATUS_MODE_INITIALIZATION; node_status.mode = UAVCAN_PROTOCOL_NODESTATUS_MODE_INITIALIZATION;
node_status.uptime_sec = AP_HAL::millis() / 1000U; node_status.uptime_sec = AP_HAL::native_millis() / 1000U;
if (g.can_node >= 0 && g.can_node < 128) { if (g.can_node >= 0 && g.can_node < 128) {
PreferredNodeID = g.can_node; PreferredNodeID = g.can_node;
@ -1082,7 +1082,7 @@ void AP_Periph_FW::pwm_irq_handler(uint8_t pin, bool pin_state, uint32_t timesta
void AP_Periph_FW::pwm_hardpoint_update() void AP_Periph_FW::pwm_hardpoint_update()
{ {
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
// send at 10Hz // send at 10Hz
void *save = hal.scheduler->disable_interrupts_save(); void *save = hal.scheduler->disable_interrupts_save();
uint16_t value = pwm_hardpoint.highest_pwm; uint16_t value = pwm_hardpoint.highest_pwm;
@ -1146,10 +1146,10 @@ void AP_Periph_FW::hwesc_telem_update()
void AP_Periph_FW::can_update() void AP_Periph_FW::can_update()
{ {
static uint32_t last_1Hz_ms; static uint32_t last_1Hz_ms;
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
if (now - last_1Hz_ms >= 1000) { if (now - last_1Hz_ms >= 1000) {
last_1Hz_ms = now; last_1Hz_ms = now;
process1HzTasks(AP_HAL::micros64()); process1HzTasks(AP_HAL::native_micros64());
} }
can_mag_update(); can_mag_update();
can_gps_update(); can_gps_update();
@ -1192,7 +1192,7 @@ void AP_Periph_FW::can_mag_update(void)
#if CAN_PROBE_CONTINUOUS #if CAN_PROBE_CONTINUOUS
if (compass.get_count() == 0) { if (compass.get_count() == 0) {
static uint32_t last_probe_ms; static uint32_t last_probe_ms;
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
if (now - last_probe_ms >= 1000) { if (now - last_probe_ms >= 1000) {
last_probe_ms = now; last_probe_ms = now;
compass.init(); compass.init();
@ -1250,7 +1250,7 @@ void AP_Periph_FW::can_gps_update(void)
const Location &loc = gps.location(); const Location &loc = gps.location();
const Vector3f &vel = gps.velocity(); const Vector3f &vel = gps.velocity();
pkt.timestamp.usec = AP_HAL::micros64(); pkt.timestamp.usec = AP_HAL::native_micros64();
pkt.gnss_timestamp.usec = gps.time_epoch_usec(); pkt.gnss_timestamp.usec = gps.time_epoch_usec();
if (pkt.gnss_timestamp.usec == 0) { if (pkt.gnss_timestamp.usec == 0) {
pkt.gnss_time_standard = UAVCAN_EQUIPMENT_GNSS_FIX_GNSS_TIME_STANDARD_NONE; pkt.gnss_time_standard = UAVCAN_EQUIPMENT_GNSS_FIX_GNSS_TIME_STANDARD_NONE;
@ -1333,7 +1333,7 @@ void AP_Periph_FW::can_gps_update(void)
const Location &loc = gps.location(); const Location &loc = gps.location();
const Vector3f &vel = gps.velocity(); const Vector3f &vel = gps.velocity();
pkt.timestamp.usec = AP_HAL::micros64(); pkt.timestamp.usec = AP_HAL::native_micros64();
pkt.gnss_timestamp.usec = gps.time_epoch_usec(); pkt.gnss_timestamp.usec = gps.time_epoch_usec();
if (pkt.gnss_timestamp.usec == 0) { if (pkt.gnss_timestamp.usec == 0) {
pkt.gnss_time_standard = UAVCAN_EQUIPMENT_GNSS_FIX_GNSS_TIME_STANDARD_NONE; pkt.gnss_time_standard = UAVCAN_EQUIPMENT_GNSS_FIX_GNSS_TIME_STANDARD_NONE;
@ -1515,7 +1515,7 @@ void AP_Periph_FW::can_airspeed_update(void)
} }
#if CAN_PROBE_CONTINUOUS #if CAN_PROBE_CONTINUOUS
if (!airspeed.healthy()) { if (!airspeed.healthy()) {
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
static uint32_t last_probe_ms; static uint32_t last_probe_ms;
if (now - last_probe_ms >= 1000) { if (now - last_probe_ms >= 1000) {
last_probe_ms = now; last_probe_ms = now;
@ -1523,7 +1523,7 @@ void AP_Periph_FW::can_airspeed_update(void)
} }
} }
#endif #endif
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
if (now - last_airspeed_update_ms < 50) { if (now - last_airspeed_update_ms < 50) {
// max 20Hz data // max 20Hz data
return; return;
@ -1579,7 +1579,7 @@ void AP_Periph_FW::can_rangefinder_update(void)
} }
#if CAN_PROBE_CONTINUOUS #if CAN_PROBE_CONTINUOUS
if (rangefinder.num_sensors() == 0) { if (rangefinder.num_sensors() == 0) {
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
static uint32_t last_probe_ms; static uint32_t last_probe_ms;
if (now - last_probe_ms >= 1000) { if (now - last_probe_ms >= 1000) {
last_probe_ms = now; last_probe_ms = now;
@ -1587,7 +1587,7 @@ void AP_Periph_FW::can_rangefinder_update(void)
} }
} }
#endif #endif
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
static uint32_t last_update_ms; static uint32_t last_update_ms;
if (now - last_update_ms < 20) { if (now - last_update_ms < 20) {
// max 50Hz data // max 50Hz data

View File

@ -39,7 +39,7 @@ bool HWESC_Telem::update()
} }
// we expect at least 50ms idle between frames // we expect at least 50ms idle between frames
uint32_t now = AP_HAL::millis(); uint32_t now = AP_HAL::native_millis();
bool frame_gap = (now - last_read_ms) > 10; bool frame_gap = (now - last_read_ms) > 10;
last_read_ms = now; last_read_ms = now;