5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-12 10:58:30 -04:00

AP_Motors: fix optimum thrust calcs

This commit is contained in:
Leonard Hall 2017-10-04 22:06:43 +10:30 committed by Randy Mackay
parent b47d575f65
commit eb6ab53f6c

View File

@ -136,6 +136,7 @@ void AP_MotorsMatrix::output_armed_stabilizing()
float pitch_thrust; // pitch thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0
float yaw_thrust; // yaw thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
float throttle_avg_max; // throttle thrust average maximum value, 0.0 - 1.0
float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing
float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits
float rpy_low = 0.0f; // lowest motor value float rpy_low = 0.0f; // lowest motor value
@ -149,6 +150,7 @@ void AP_MotorsMatrix::output_armed_stabilizing()
pitch_thrust = _pitch_in * get_compensation_gain(); pitch_thrust = _pitch_in * get_compensation_gain();
yaw_thrust = _yaw_in * get_compensation_gain(); yaw_thrust = _yaw_in * get_compensation_gain();
throttle_thrust = get_throttle() * get_compensation_gain(); throttle_thrust = get_throttle() * get_compensation_gain();
throttle_avg_max = _throttle_avg_max * get_compensation_gain();
// sanity check throttle is above zero and below current limited throttle // sanity check throttle is above zero and below current limited throttle
if (throttle_thrust <= 0.0f) { if (throttle_thrust <= 0.0f) {
@ -160,7 +162,7 @@ void AP_MotorsMatrix::output_armed_stabilizing()
limit.throttle_upper = true; limit.throttle_upper = true;
} }
_throttle_avg_max = constrain_float(_throttle_avg_max, throttle_thrust, _throttle_thrust_max); throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, _throttle_thrust_max);
// calculate throttle that gives most possible room for yaw which is the lower of: // calculate throttle that gives most possible room for yaw which is the lower of:
// 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible margin above the highest motor and below the lowest // 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible margin above the highest motor and below the lowest
@ -175,7 +177,7 @@ void AP_MotorsMatrix::output_armed_stabilizing()
// calculate amount of yaw we can fit into the throttle range // calculate amount of yaw we can fit into the throttle range
// this is always equal to or less than the requested yaw from the pilot or rate controller // this is always equal to or less than the requested yaw from the pilot or rate controller
throttle_thrust_best_rpy = MIN(0.5f, _throttle_avg_max); throttle_thrust_best_rpy = MIN(0.5f, throttle_avg_max);
// calculate roll and pitch for each motor // calculate roll and pitch for each motor
// calculate the amount of yaw input that each motor can accept // calculate the amount of yaw input that each motor can accept
@ -184,12 +186,12 @@ void AP_MotorsMatrix::output_armed_stabilizing()
_thrust_rpyt_out[i] = roll_thrust * _roll_factor[i] + pitch_thrust * _pitch_factor[i]; _thrust_rpyt_out[i] = roll_thrust * _roll_factor[i] + pitch_thrust * _pitch_factor[i];
if (!is_zero(_yaw_factor[i])){ if (!is_zero(_yaw_factor[i])){
if (yaw_thrust * _yaw_factor[i] > 0.0f) { if (yaw_thrust * _yaw_factor[i] > 0.0f) {
unused_range = fabsf((1.0f - (throttle_thrust_best_rpy + _thrust_rpyt_out[i]))/_yaw_factor[i]); unused_range = fabsf(MAX(1.0f - (throttle_thrust_best_rpy + _thrust_rpyt_out[i]), 0.0f)/_yaw_factor[i]);
if (yaw_allowed > unused_range) { if (yaw_allowed > unused_range) {
yaw_allowed = unused_range; yaw_allowed = unused_range;
} }
} else { } else {
unused_range = fabsf((throttle_thrust_best_rpy + _thrust_rpyt_out[i])/_yaw_factor[i]); unused_range = fabsf(MAX(throttle_thrust_best_rpy + _thrust_rpyt_out[i], 0.0f)/_yaw_factor[i]);
if (yaw_allowed > unused_range) { if (yaw_allowed > unused_range) {
yaw_allowed = unused_range; yaw_allowed = unused_range;
} }
@ -225,11 +227,15 @@ void AP_MotorsMatrix::output_armed_stabilizing()
} }
// check everything fits // check everything fits
throttle_thrust_best_rpy = MIN(0.5f - (rpy_low+rpy_high)/2.0, _throttle_avg_max); throttle_thrust_best_rpy = MIN(0.5f - (rpy_low+rpy_high)/2.0, throttle_avg_max);
if (is_zero(rpy_low)){ if (is_zero(rpy_low) && is_zero(rpy_high)){
rpy_scale = 1.0f; rpy_scale = 1.0f;
} else { } else if (is_zero(rpy_low)) {
rpy_scale = constrain_float((1.0f-throttle_thrust_best_rpy)/rpy_high, 0.0f, 1.0f);
} else if (is_zero(rpy_high)) {
rpy_scale = constrain_float(-throttle_thrust_best_rpy/rpy_low, 0.0f, 1.0f); rpy_scale = constrain_float(-throttle_thrust_best_rpy/rpy_low, 0.0f, 1.0f);
} else {
rpy_scale = constrain_float(MIN(-throttle_thrust_best_rpy/rpy_low, (1.0f-throttle_thrust_best_rpy)/rpy_high), 0.0f, 1.0f);
} }
// calculate how close the motors can come to the desired throttle // calculate how close the motors can come to the desired throttle