uncrustify libraries/RC_Channel/RC_Channel.cpp

This commit is contained in:
uncrustify 2012-08-16 23:22:48 -07:00 committed by Pat Hickey
parent 02877cfe28
commit e9fb7cfd92

View File

@ -1,20 +1,20 @@
/*
RC_Channel.cpp - Radio library for Arduino
Code by Jason Short. DIYDrones.com
This library is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
* RC_Channel.cpp - Radio library for Arduino
* Code by Jason Short. DIYDrones.com
*
* This library is free software; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*/
#include <math.h>
#include <avr/eeprom.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#include "Arduino.h"
#else
#include "WProgram.h"
#include "WProgram.h"
#endif
#include "RC_Channel.h"
@ -29,110 +29,110 @@ RC_Channel* rc_ch[NUM_CHANNELS];
APM_RC_Class *RC_Channel::_apm_rc;
const AP_Param::GroupInfo RC_Channel::var_info[] PROGMEM = {
// @Param: MIN
// @DisplayName: RC min PWM
// @Description: RC minimum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: ms
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MIN", 0, RC_Channel, radio_min, 1100),
// @Param: MIN
// @DisplayName: RC min PWM
// @Description: RC minimum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: ms
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MIN", 0, RC_Channel, radio_min, 1100),
// @Param: TRIM
// @DisplayName: RC trim PWM
// @Description: RC trim (neutral) PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: ms
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("TRIM", 1, RC_Channel, radio_trim, 1500),
// @Param: TRIM
// @DisplayName: RC trim PWM
// @Description: RC trim (neutral) PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: ms
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("TRIM", 1, RC_Channel, radio_trim, 1500),
// @Param: MAX
// @DisplayName: RC max PWM
// @Description: RC maximum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: ms
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MAX", 2, RC_Channel, radio_max, 1900),
// @Param: MAX
// @DisplayName: RC max PWM
// @Description: RC maximum PWM pulse width. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: ms
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MAX", 2, RC_Channel, radio_max, 1900),
// @Param: REV
// @DisplayName: RC reverse
// @Description: Reverse servo operation. Ignored on APM1 unless dip-switches are disabled.
// @Values: -1:Reversed,1:Normal
// @User: Advanced
AP_GROUPINFO("REV", 3, RC_Channel, _reverse, 1),
// @Param: REV
// @DisplayName: RC reverse
// @Description: Reverse servo operation. Ignored on APM1 unless dip-switches are disabled.
// @Values: -1:Reversed,1:Normal
// @User: Advanced
AP_GROUPINFO("REV", 3, RC_Channel, _reverse, 1),
// @Param: DZ
// @DisplayName: RC dead-zone
// @Description: dead zone around trim.
// @User: Advanced
AP_GROUPINFO("DZ", 4, RC_Channel, _dead_zone, 0),
AP_GROUPEND
// @Param: DZ
// @DisplayName: RC dead-zone
// @Description: dead zone around trim.
// @User: Advanced
AP_GROUPINFO("DZ", 4, RC_Channel, _dead_zone, 0),
AP_GROUPEND
};
// setup the control preferences
void
RC_Channel::set_range(int16_t low, int16_t high)
{
_type = RC_CHANNEL_RANGE;
_high = high;
_low = low;
_high_out = high;
_low_out = low;
_type = RC_CHANNEL_RANGE;
_high = high;
_low = low;
_high_out = high;
_low_out = low;
}
void
RC_Channel::set_range_out(int16_t low, int16_t high)
{
_high_out = high;
_low_out = low;
_high_out = high;
_low_out = low;
}
void
RC_Channel::set_angle(int16_t angle)
{
_type = RC_CHANNEL_ANGLE;
_high = angle;
_type = RC_CHANNEL_ANGLE;
_high = angle;
}
void
RC_Channel::set_dead_zone(int16_t dzone)
{
_dead_zone.set_and_save(abs(dzone >>1));
_dead_zone.set_and_save(abs(dzone >>1));
}
void
RC_Channel::set_reverse(bool reverse)
{
if (reverse) _reverse = -1;
else _reverse = 1;
if (reverse) _reverse = -1;
else _reverse = 1;
}
bool
RC_Channel::get_reverse(void)
{
if (_reverse==-1) return 1;
else return 0;
if (_reverse==-1) return 1;
else return 0;
}
void
RC_Channel::set_filter(bool filter)
{
_filter = filter;
_filter = filter;
}
void
RC_Channel::set_type(uint8_t t)
{
_type = t;
_type = t;
}
// call after first read
void
RC_Channel::trim()
{
radio_trim = radio_in;
radio_trim = radio_in;
}
// read input from APM_RC - create a control_in value
@ -140,78 +140,78 @@ void
RC_Channel::set_pwm(int16_t pwm)
{
/*if(_filter){
if(radio_in == 0)
radio_in = pwm;
else
radio_in = (pwm + radio_in) >> 1; // Small filtering
}else{
radio_in = pwm;
}*/
/*if(_filter){
* if(radio_in == 0)
* radio_in = pwm;
* else
* radio_in = (pwm + radio_in) >> 1; // Small filtering
* }else{
* radio_in = pwm;
* }*/
radio_in = pwm;
radio_in = pwm;
if(_type == RC_CHANNEL_RANGE){
control_in = pwm_to_range();
//control_in = constrain(control_in, _low, _high);
//control_in = min(control_in, _high);
control_in = (control_in < _dead_zone) ? 0 : control_in;
if(_type == RC_CHANNEL_RANGE) {
control_in = pwm_to_range();
//control_in = constrain(control_in, _low, _high);
//control_in = min(control_in, _high);
control_in = (control_in < _dead_zone) ? 0 : control_in;
if (fabs(scale_output) != 1){
control_in *= scale_output;
}
if (fabs(scale_output) != 1) {
control_in *= scale_output;
}
}else{
}else{
//RC_CHANNEL_ANGLE, RC_CHANNEL_ANGLE_RAW
control_in = pwm_to_angle();
//RC_CHANNEL_ANGLE, RC_CHANNEL_ANGLE_RAW
control_in = pwm_to_angle();
if (fabs(scale_output) != 1){
control_in *= scale_output;
}
if (fabs(scale_output) != 1) {
control_in *= scale_output;
}
/*
// coming soon ??
if(expo) {
long temp = control_in;
temp = (temp * temp) / (long)_high;
control_in = (int16_t)((control_in >= 0) ? temp : -temp);
}*/
}
/*
* // coming soon ??
* if(expo) {
* long temp = control_in;
* temp = (temp * temp) / (long)_high;
* control_in = (int16_t)((control_in >= 0) ? temp : -temp);
* }*/
}
}
int16_t
RC_Channel::control_mix(float value)
{
return (1 - abs(control_in / _high)) * value + control_in;
return (1 - abs(control_in / _high)) * value + control_in;
}
// are we below a threshold?
bool
RC_Channel::get_failsafe(void)
{
return (radio_in < (radio_min - 50));
return (radio_in < (radio_min - 50));
}
// returns just the PWM without the offset from radio_min
void
RC_Channel::calc_pwm(void)
{
if(_type == RC_CHANNEL_RANGE){
pwm_out = range_to_pwm();
radio_out = (_reverse >= 0) ? (radio_min + pwm_out) : (radio_max - pwm_out);
if(_type == RC_CHANNEL_RANGE) {
pwm_out = range_to_pwm();
radio_out = (_reverse >= 0) ? (radio_min + pwm_out) : (radio_max - pwm_out);
}else if(_type == RC_CHANNEL_ANGLE_RAW){
pwm_out = (float)servo_out * .1;
radio_out = (pwm_out * _reverse) + radio_trim;
}else if(_type == RC_CHANNEL_ANGLE_RAW) {
pwm_out = (float)servo_out * .1;
radio_out = (pwm_out * _reverse) + radio_trim;
}else{ // RC_CHANNEL_ANGLE
pwm_out = angle_to_pwm();
radio_out = pwm_out + radio_trim;
}
}else{ // RC_CHANNEL_ANGLE
pwm_out = angle_to_pwm();
radio_out = pwm_out + radio_trim;
}
radio_out = constrain(radio_out, radio_min.get(), radio_max.get());
radio_out = constrain(radio_out, radio_min.get(), radio_max.get());
}
// ------------------------------------------
@ -219,21 +219,21 @@ RC_Channel::calc_pwm(void)
void
RC_Channel::load_eeprom(void)
{
radio_min.load();
radio_trim.load();
radio_max.load();
_reverse.load();
_dead_zone.load();
radio_min.load();
radio_trim.load();
radio_max.load();
_reverse.load();
_dead_zone.load();
}
void
RC_Channel::save_eeprom(void)
{
radio_min.save();
radio_trim.save();
radio_max.save();
_reverse.save();
_dead_zone.save();
radio_min.save();
radio_trim.save();
radio_max.save();
_reverse.save();
_dead_zone.save();
}
// ------------------------------------------
@ -241,14 +241,14 @@ RC_Channel::save_eeprom(void)
void
RC_Channel::zero_min_max()
{
radio_min = radio_max = radio_in;
radio_min = radio_max = radio_in;
}
void
RC_Channel::update_min_max()
{
radio_min = min(radio_min.get(), radio_in);
radio_max = max(radio_max.get(), radio_in);
radio_min = min(radio_min.get(), radio_in);
radio_max = max(radio_max.get(), radio_in);
}
// ------------------------------------------
@ -256,29 +256,29 @@ RC_Channel::update_min_max()
int16_t
RC_Channel::pwm_to_angle()
{
int16_t radio_trim_high = radio_trim + _dead_zone;
int16_t radio_trim_low = radio_trim - _dead_zone;
int16_t radio_trim_high = radio_trim + _dead_zone;
int16_t radio_trim_low = radio_trim - _dead_zone;
// prevent div by 0
if ((radio_trim_low - radio_min) == 0 || (radio_max - radio_trim_high) == 0)
return 0;
if(radio_in > radio_trim_high){
return _reverse * ((long)_high * (long)(radio_in - radio_trim_high)) / (long)(radio_max - radio_trim_high);
}else if(radio_in < radio_trim_low){
return _reverse * ((long)_high * (long)(radio_in - radio_trim_low)) / (long)(radio_trim_low - radio_min);
}else
return 0;
if(radio_in > radio_trim_high) {
return _reverse * ((long)_high * (long)(radio_in - radio_trim_high)) / (long)(radio_max - radio_trim_high);
}else if(radio_in < radio_trim_low) {
return _reverse * ((long)_high * (long)(radio_in - radio_trim_low)) / (long)(radio_trim_low - radio_min);
}else
return 0;
}
int16_t
RC_Channel::angle_to_pwm()
{
if((servo_out * _reverse) > 0)
return _reverse * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high;
else
return _reverse * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high;
if((servo_out * _reverse) > 0)
return _reverse * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high;
else
return _reverse * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high;
}
// ------------------------------------------
@ -286,23 +286,23 @@ RC_Channel::angle_to_pwm()
int16_t
RC_Channel::pwm_to_range()
{
int16_t r_in = constrain(radio_in, radio_min.get(), radio_max.get());
int16_t r_in = constrain(radio_in, radio_min.get(), radio_max.get());
int16_t radio_trim_low = radio_min + _dead_zone;
int16_t radio_trim_low = radio_min + _dead_zone;
if(r_in > radio_trim_low)
return (_low + ((long)(_high - _low) * (long)(r_in - radio_trim_low)) / (long)(radio_max - radio_trim_low));
else if(_dead_zone > 0)
return 0;
else
return _low;
if(r_in > radio_trim_low)
return (_low + ((long)(_high - _low) * (long)(r_in - radio_trim_low)) / (long)(radio_max - radio_trim_low));
else if(_dead_zone > 0)
return 0;
else
return _low;
}
int16_t
RC_Channel::range_to_pwm()
{
return ((long)(servo_out - _low_out) * (long)(radio_max - radio_min)) / (long)(_high_out - _low_out);
return ((long)(servo_out - _low_out) * (long)(radio_max - radio_min)) / (long)(_high_out - _low_out);
}
// ------------------------------------------
@ -310,10 +310,10 @@ RC_Channel::range_to_pwm()
float
RC_Channel::norm_input()
{
if(radio_in < radio_trim)
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
else
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
if(radio_in < radio_trim)
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
else
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
}
float
@ -321,10 +321,10 @@ RC_Channel::norm_output()
{
int16_t mid = (radio_max + radio_min) / 2;
if(radio_out < mid)
return (float)(radio_out - mid) / (float)(mid - radio_min);
else
return (float)(radio_out - mid) / (float)(radio_max - mid);
if(radio_out < mid)
return (float)(radio_out - mid) / (float)(mid - radio_min);
else
return (float)(radio_out - mid) / (float)(radio_max - mid);
}
void RC_Channel::set_apm_rc( APM_RC_Class * apm_rc )