mirror of https://github.com/ArduPilot/ardupilot
Tools: improve tempcal script
- allow display of log corrections - added online estimator - allow learning using TCLR records
This commit is contained in:
parent
30385fb8cb
commit
e8ab8ed29e
|
@ -5,8 +5,11 @@ Create temperature calibration parameters for IMUs based on log data.
|
|||
|
||||
from argparse import ArgumentParser
|
||||
parser = ArgumentParser(description=__doc__)
|
||||
parser.add_argument("--outfile", default="tcal.parm")
|
||||
parser.add_argument("--no-graph", action='store_true', default=False)
|
||||
parser.add_argument("--outfile", default="tcal.parm", help='set output file')
|
||||
parser.add_argument("--no-graph", action='store_true', default=False, help='disable graph display')
|
||||
parser.add_argument("--log-parm", action='store_true', default=False, help='show corrections using coefficients from log file')
|
||||
parser.add_argument("--online", action='store_true', default=False, help='use online polynomial fitting')
|
||||
parser.add_argument("--tclr", action='store_true', default=False, help='use TCLR messages from log instead of IMU messages')
|
||||
parser.add_argument("log", metavar="LOG")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
@ -27,11 +30,201 @@ POLY_ORDER = 3
|
|||
# use exponential notation
|
||||
SCALE_FACTOR = 1.0e6
|
||||
|
||||
def moving_average(data, w):
|
||||
'''apply a moving average filter over a window of width w'''
|
||||
ret = np.cumsum(data)
|
||||
ret[w:] = ret[w:] - ret[:-w]
|
||||
return ret[w - 1:] / w
|
||||
AXES = ['X','Y','Z']
|
||||
AXEST = ['X','Y','Z','T','time']
|
||||
|
||||
class Coefficients:
|
||||
'''class representing a set of coefficients'''
|
||||
def __init__(self):
|
||||
self.acoef = {}
|
||||
self.gcoef = {}
|
||||
self.enable = [0]*3
|
||||
self.tmin = [-100]*3
|
||||
self.tmax = [-100]*3
|
||||
self.gtcal = {}
|
||||
self.atcal = {}
|
||||
|
||||
def set_accel_poly(self, imu, axis, values):
|
||||
if not imu in self.acoef:
|
||||
self.acoef[imu] = {}
|
||||
if not axis in self.acoef[imu]:
|
||||
self.acoef[imu][axis] = [0]*4
|
||||
self.acoef[imu][axis] = values
|
||||
|
||||
def set_gyro_poly(self, imu, axis, values):
|
||||
if not imu in self.gcoef:
|
||||
self.gcoef[imu] = {}
|
||||
if not axis in self.gcoef[imu]:
|
||||
self.gcoef[imu][axis] = [0]*4
|
||||
self.gcoef[imu][axis] = values
|
||||
|
||||
def set_acoeff(self, imu, axis, order, value):
|
||||
if not imu in self.acoef:
|
||||
self.acoef[imu] = {}
|
||||
if not axis in self.acoef[imu]:
|
||||
self.acoef[imu][axis] = [0]*4
|
||||
self.acoef[imu][axis][POLY_ORDER-order] = value
|
||||
|
||||
def set_gcoeff(self, imu, axis, order, value):
|
||||
if not imu in self.gcoef:
|
||||
self.gcoef[imu] = {}
|
||||
if not axis in self.gcoef[imu]:
|
||||
self.gcoef[imu][axis] = [0]*4
|
||||
self.gcoef[imu][axis][POLY_ORDER-order] = value
|
||||
|
||||
def set_tmin(self, imu, tmin):
|
||||
self.tmin[imu] = tmin
|
||||
|
||||
def set_tmax(self, imu, tmax):
|
||||
self.tmax[imu] = tmax
|
||||
|
||||
def set_gyro_tcal(self, imu, value):
|
||||
self.gtcal[imu] = value
|
||||
|
||||
def set_accel_tcal(self, imu, value):
|
||||
self.atcal[imu] = value
|
||||
|
||||
def set_enable(self, imu, value):
|
||||
self.enable[imu] = value
|
||||
|
||||
def correction(self, coeff, imu, temperature, axis):
|
||||
'''calculate correction from temperature calibration from log data using parameters'''
|
||||
if self.enable[imu] != 1.0:
|
||||
return 0.0
|
||||
tmid = 0.5 * (self.tmax[imu] + self.tmin[imu])
|
||||
if tmid <= 0:
|
||||
return 0.0
|
||||
if self.atcal[imu] <= -80:
|
||||
return 0.0
|
||||
if not axis in coeff:
|
||||
return 0.0
|
||||
temperature = constrain(temperature, self.tmin[imu], self.tmax[imu])
|
||||
cal_temp = constrain(self.atcal[imu], self.tmin[imu], self.tmax[imu])
|
||||
poly = np.poly1d(coeff[axis])
|
||||
ret = poly(self.atcal[imu] - tmid) - poly(temperature-tmid)
|
||||
return ret
|
||||
|
||||
def correction_accel(self, imu, temperature):
|
||||
'''calculate accel correction from temperature calibration from
|
||||
log data using parameters'''
|
||||
return Vector3(self.correction(self.acoef[imu], imu, temperature, 'X'),
|
||||
self.correction(self.acoef[imu], imu, temperature, 'Y'),
|
||||
self.correction(self.acoef[imu], imu, temperature, 'Z'))
|
||||
|
||||
|
||||
def correction_gyro(self, imu, temperature):
|
||||
'''calculate gyro correction from temperature calibration from
|
||||
log data using parameters'''
|
||||
return Vector3(self.correction(self.gcoef[imu], imu, temperature, 'X'),
|
||||
self.correction(self.gcoef[imu], imu, temperature, 'Y'),
|
||||
self.correction(self.gcoef[imu], imu, temperature, 'Z'))
|
||||
|
||||
def param_string(self, imu):
|
||||
params = ''
|
||||
params += 'INS_TCAL%u_ENABLE 1\n' % (imu+1)
|
||||
params += 'INS_TCAL%u_TMIN %.1f\n' % (imu+1, self.tmin[imu])
|
||||
params += 'INS_TCAL%u_TMAX %.1f\n' % (imu+1, self.tmax[imu])
|
||||
# note that we don't save the first term of the polynomial as that is a
|
||||
# constant offset which is already handled by the accel/gyro constant
|
||||
# offsets. We only same the temperature dependent part of the
|
||||
# calibration
|
||||
for p in range(POLY_ORDER):
|
||||
for axis in AXES:
|
||||
params += 'INS_TCAL%u_ACC%u_%s %.9f\n' % (imu+1, p+1, axis, self.acoef[imu][axis][POLY_ORDER-(p+1)]*SCALE_FACTOR)
|
||||
for p in range(POLY_ORDER):
|
||||
for axis in AXES:
|
||||
params += 'INS_TCAL%u_GYR%u_%s %.9f\n' % (imu+1, p+1, axis, self.gcoef[imu][axis][POLY_ORDER-(p+1)]*SCALE_FACTOR)
|
||||
return params
|
||||
|
||||
|
||||
class OnlineIMUfit:
|
||||
'''implement the online learning used in ArduPilot'''
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def update(self, x, y):
|
||||
temp = 1.0
|
||||
|
||||
for i in range(2*(self.porder - 1), -1, -1):
|
||||
k = 0 if (i < self.porder) else (i - self.porder + 1)
|
||||
for j in range(i - k, k-1, -1):
|
||||
self.mat[j][i-j] += temp
|
||||
temp *= x
|
||||
|
||||
temp = 1.0
|
||||
for i in range(self.porder-1, -1, -1):
|
||||
self.vec[i] += y * temp
|
||||
temp *= x
|
||||
|
||||
def get_polynomial(self):
|
||||
inv_mat = np.linalg.inv(self.mat)
|
||||
res = np.zeros(self.porder)
|
||||
for i in range(self.porder):
|
||||
res[i] = 0.0
|
||||
for j in range(self.porder):
|
||||
res[i] += inv_mat[i][j] * self.vec[j]
|
||||
return res
|
||||
|
||||
def polyfit(self, x, y, order):
|
||||
self.porder = order + 1
|
||||
self.mat = np.zeros((self.porder, self.porder))
|
||||
self.vec = np.zeros(self.porder)
|
||||
for i in range(len(x)):
|
||||
self.update(x[i], y[i])
|
||||
return self.get_polynomial()
|
||||
|
||||
class IMUData:
|
||||
def __init__(self):
|
||||
self.accel = {}
|
||||
self.gyro = {}
|
||||
|
||||
def IMUs(self):
|
||||
'''return list of IMUs'''
|
||||
return self.accel.keys()
|
||||
|
||||
def add_accel(self, imu, temperature, time, value):
|
||||
if not imu in self.accel:
|
||||
self.accel[imu] = {}
|
||||
for axis in AXEST:
|
||||
self.accel[imu][axis] = np.zeros(0,dtype=float)
|
||||
self.accel[imu]['T'] = np.append(self.accel[imu]['T'], temperature)
|
||||
self.accel[imu]['X'] = np.append(self.accel[imu]['X'], value.x)
|
||||
self.accel[imu]['Y'] = np.append(self.accel[imu]['Y'], value.y)
|
||||
self.accel[imu]['Z'] = np.append(self.accel[imu]['Z'], value.z)
|
||||
self.accel[imu]['time'] = np.append(self.accel[imu]['time'], time)
|
||||
|
||||
def add_gyro(self, imu, temperature, time, value):
|
||||
if not imu in self.gyro:
|
||||
self.gyro[imu] = {}
|
||||
for axis in AXEST:
|
||||
self.gyro[imu][axis] = np.zeros(0,dtype=float)
|
||||
self.gyro[imu]['T'] = np.append(self.gyro[imu]['T'], temperature)
|
||||
self.gyro[imu]['X'] = np.append(self.gyro[imu]['X'], value.x)
|
||||
self.gyro[imu]['Y'] = np.append(self.gyro[imu]['Y'], value.y)
|
||||
self.gyro[imu]['Z'] = np.append(self.gyro[imu]['Z'], value.z)
|
||||
self.gyro[imu]['time'] = np.append(self.gyro[imu]['time'], time)
|
||||
|
||||
def moving_average(self, data, w):
|
||||
'''apply a moving average filter over a window of width w'''
|
||||
ret = np.cumsum(data)
|
||||
ret[w:] = ret[w:] - ret[:-w]
|
||||
return ret[w - 1:] / w
|
||||
|
||||
def FilterArray(self, data, width_s):
|
||||
'''apply moving average filter of width width_s seconds'''
|
||||
nseconds = data['time'][-1] - data['time'][0]
|
||||
nsamples = len(data['time'])
|
||||
window = int(nsamples / nseconds) * width_s
|
||||
if window > 1:
|
||||
for axis in AXEST:
|
||||
data[axis] = self.moving_average(data[axis], window)
|
||||
return data
|
||||
|
||||
def Filter(self, width_s):
|
||||
'''apply moving average filter of width width_s seconds'''
|
||||
for imu in self.IMUs():
|
||||
self.accel[imu] = self.FilterArray(self.accel[imu], width_s)
|
||||
self.gyro[imu] = self.FilterArray(self.gyro[imu], width_s)
|
||||
|
||||
def constrain(value, minv, maxv):
|
||||
"""Constrain a value to a range."""
|
||||
|
@ -41,178 +234,160 @@ def constrain(value, minv, maxv):
|
|||
value = maxv
|
||||
return value
|
||||
|
||||
def correction_parm(enable, tmin, tmax, coeff, temperature, cal_temp, axis):
|
||||
'''calculate correction from temperature calibration from log data using parameters'''
|
||||
if enable != 1.0:
|
||||
return 0.0
|
||||
tmid = 0.5 * (tmax + tmin)
|
||||
if tmid <= 0:
|
||||
return 0.0
|
||||
if cal_temp <= -80:
|
||||
return 0.0
|
||||
if not axis in coeff:
|
||||
return 0.0
|
||||
temperature = constrain(temperature, tmin, tmax)
|
||||
cal_temp = constrain(cal_temp, tmin, tmax)
|
||||
poly = np.poly1d(coeff[axis])
|
||||
ret = poly(cal_temp-tmid) - poly(temperature-tmid)
|
||||
return ret
|
||||
|
||||
def IMUfit(logfile):
|
||||
'''find IMU calibration parameters from a log file'''
|
||||
print("Processing log %s" % logfile)
|
||||
mlog = mavutil.mavlink_connection(logfile)
|
||||
|
||||
accel = {}
|
||||
gyro = {}
|
||||
acoef = {}
|
||||
gcoef = {}
|
||||
enable = [0]*3
|
||||
tmin = [-100]*3
|
||||
tmax = [-100]*3
|
||||
gtcal = {}
|
||||
atcal = {}
|
||||
data = IMUData()
|
||||
|
||||
c = Coefficients()
|
||||
orientation = 0
|
||||
axes = ['X','Y','Z']
|
||||
axesT = ['X','Y','Z','T','time']
|
||||
|
||||
stop_capture = [ False ] * 3
|
||||
|
||||
if args.tclr:
|
||||
messages = ['PARM','TCLR']
|
||||
else:
|
||||
messages = ['PARM','IMU']
|
||||
|
||||
while True:
|
||||
msg = mlog.recv_match(type=['IMU','PARM'])
|
||||
msg = mlog.recv_match(type=messages)
|
||||
if msg is None:
|
||||
break
|
||||
|
||||
if msg.get_type() == 'PARM':
|
||||
# build up the old coefficients so we can remove the impact of
|
||||
# existing coefficients from the data
|
||||
m = re.match("^INS_TCAL(\d)_ENABLE$", msg.Name)
|
||||
if m:
|
||||
imu = int(m.group(1))-1
|
||||
if stop_capture[imu]:
|
||||
continue
|
||||
if msg.Value == 1 and c.enable[imu] == 2:
|
||||
print("TCAL[%u] enabled" % imu)
|
||||
stop_capture[imu] = True
|
||||
continue
|
||||
if msg.Value == 0 and c.enable[imu] == 1:
|
||||
print("TCAL[%u] disabled" % imu)
|
||||
stop_capture[imu] = True
|
||||
continue
|
||||
c.set_enable(imu, msg.Value)
|
||||
m = re.match("^INS_TCAL(\d)_([AG]..)([1-3])_([XYZ])$", msg.Name)
|
||||
if m:
|
||||
imu = int(m.group(1))-1
|
||||
stype = m.group(2)
|
||||
p = int(m.group(3))
|
||||
axis = m.group(4)
|
||||
if stop_capture[imu]:
|
||||
continue
|
||||
if stype == 'ACC':
|
||||
if not imu in acoef:
|
||||
acoef[imu] = {}
|
||||
if not axis in acoef[imu]:
|
||||
acoef[imu][axis] = [0.0]*4
|
||||
acoef[imu][axis][POLY_ORDER-p] = msg.Value/SCALE_FACTOR
|
||||
c.set_acoeff(imu, axis, p, msg.Value/SCALE_FACTOR)
|
||||
if stype == 'GYR':
|
||||
if not imu in gcoef:
|
||||
gcoef[imu] = {}
|
||||
if not axis in gcoef[imu]:
|
||||
gcoef[imu][axis] = [0.0]*4
|
||||
gcoef[imu][axis][POLY_ORDER-p] = msg.Value/SCALE_FACTOR
|
||||
m = re.match("^INS_TCAL(\d)_ENABLE$", msg.Name)
|
||||
if m:
|
||||
imu = int(m.group(1))-1
|
||||
if msg.Value == 1 and enable[imu] == 2:
|
||||
print("TCAL[%u] enabled" % imu)
|
||||
break
|
||||
enable[imu] = msg.Value
|
||||
c.set_gcoeff(imu, axis, p, msg.Value/SCALE_FACTOR)
|
||||
m = re.match("^INS_TCAL(\d)_TMIN$", msg.Name)
|
||||
if m:
|
||||
imu = int(m.group(1))-1
|
||||
tmin[imu] = msg.Value
|
||||
if stop_capture[imu]:
|
||||
continue
|
||||
c.set_tmin(imu, msg.Value)
|
||||
m = re.match("^INS_TCAL(\d)_TMAX", msg.Name)
|
||||
if m:
|
||||
imu = int(m.group(1))-1
|
||||
tmax[imu] = msg.Value
|
||||
if stop_capture[imu]:
|
||||
continue
|
||||
c.set_tmax(imu, msg.Value)
|
||||
m = re.match("^INS_GYR_CALTEMP(\d)", msg.Name)
|
||||
if m:
|
||||
imu = int(m.group(1))-1
|
||||
gtcal[imu] = msg.Value
|
||||
if stop_capture[imu]:
|
||||
continue
|
||||
c.set_gyro_tcal(imu, msg.Value)
|
||||
m = re.match("^INS_ACC_CALTEMP(\d)", msg.Name)
|
||||
if m:
|
||||
imu = int(m.group(1))-1
|
||||
atcal[imu] = msg.Value
|
||||
if stop_capture[imu]:
|
||||
continue
|
||||
c.set_accel_tcal(imu, msg.Value)
|
||||
if msg.Name == 'AHRS_ORIENTATION':
|
||||
orientation = int(msg.Value)
|
||||
print("Using orientation %d" % orientation)
|
||||
|
||||
if msg.get_type() != 'IMU':
|
||||
continue
|
||||
if msg.get_type() == 'TCLR' and args.tclr:
|
||||
imu = msg.I
|
||||
|
||||
imu = msg.I
|
||||
T = msg.Temp
|
||||
if msg.Si == 0:
|
||||
# accel
|
||||
acc = Vector3(msg.X, msg.Y, msg.Z)
|
||||
time = msg.TimeUS*1.0e-6
|
||||
data.add_accel(imu, T, time, acc)
|
||||
elif msg.Si == 1:
|
||||
# gyro
|
||||
gyr = Vector3(msg.X, msg.Y, msg.Z)
|
||||
time = msg.TimeUS*1.0e-6
|
||||
data.add_gyro(imu, T, time, gyr)
|
||||
|
||||
if imu not in accel:
|
||||
accel[imu] = {}
|
||||
gyro[imu] = {}
|
||||
for axis in axesT:
|
||||
accel[imu][axis] = np.zeros(0,dtype=float)
|
||||
gyro[imu][axis] = np.zeros(0,dtype=float)
|
||||
if msg.get_type() == 'IMU' and not args.tclr:
|
||||
imu = msg.I
|
||||
|
||||
T = msg.T
|
||||
accel[imu]['T'] = np.append(accel[imu]['T'], T)
|
||||
gyro[imu]['T'] = np.append(gyro[imu]['T'], T)
|
||||
accel[imu]['time'] = np.append(accel[imu]['time'], msg.TimeUS*1.0e-6)
|
||||
gyro[imu]['time'] = np.append(gyro[imu]['time'], msg.TimeUS*1.0e-6)
|
||||
T = msg.T
|
||||
acc = Vector3(msg.AccX, msg.AccY, msg.AccZ)
|
||||
gyr = Vector3(msg.GyrX, msg.GyrY, msg.GyrZ)
|
||||
|
||||
acc = Vector3(msg.AccX, msg.AccY, msg.AccZ)
|
||||
gyr = Vector3(msg.GyrX, msg.GyrY, msg.GyrZ)
|
||||
# invert the board orientation rotation. Corrections are in sensor frame
|
||||
if orientation != 0:
|
||||
acc = acc.rotate_by_inverse_id(orientation)
|
||||
gyr = gyr.rotate_by_inverse_id(orientation)
|
||||
if acc is None or gyr is None:
|
||||
print("Invalid AHRS_ORIENTATION %u" % orientation)
|
||||
sys.exit(1)
|
||||
|
||||
# invert the board orientation rotation. Corrections are in sensor frame
|
||||
if orientation != 0:
|
||||
acc = acc.rotate_by_inverse_id(orientation)
|
||||
gyr = gyr.rotate_by_inverse_id(orientation)
|
||||
if acc is None or gyr is None:
|
||||
print("Invalid AHRS_ORIENTATION %u" % orientation)
|
||||
sys.exit(1)
|
||||
if c.enable[imu] == 1:
|
||||
acc -= c.correction_accel(imu, T)
|
||||
gyr -= c.correction_gyro(imu, T)
|
||||
|
||||
for axis in axes:
|
||||
value = getattr(acc, axis.lower())
|
||||
if enable[imu] == 1:
|
||||
value -= correction_parm(enable[imu], tmin[imu], tmax[imu], acoef[imu],
|
||||
T, atcal[imu], axis)
|
||||
accel[imu][axis] = np.append(accel[imu][axis], value)
|
||||
time = msg.TimeUS*1.0e-6
|
||||
data.add_accel(imu, T, time, acc)
|
||||
data.add_gyro (imu, T, time, gyr)
|
||||
|
||||
value = getattr(gyr, axis.lower())
|
||||
if enable[imu] == 1:
|
||||
value -= correction_parm(enable[imu], tmin[imu], tmax[imu], gcoef[imu],
|
||||
T, gtcal[imu], axis)
|
||||
gyro[imu][axis] = np.append(gyro[imu][axis], value)
|
||||
if len(data.IMUs()) == 0:
|
||||
print("No data found")
|
||||
sys.exit(1)
|
||||
|
||||
# apply moving average filter with 2s width
|
||||
for imu in accel:
|
||||
nseconds = accel[imu]['time'][-1] - accel[imu]['time'][0]
|
||||
nsamples = len(accel[imu]['time'])
|
||||
window = int(nsamples / nseconds) * 2
|
||||
print("Loaded %u accel and %u gyro samples" % (len(data.accel[0]['T']),len(data.gyro[0]['T'])))
|
||||
|
||||
for axis in axesT:
|
||||
accel[imu][axis] = moving_average(accel[imu][axis], window)
|
||||
gyro[imu][axis] = moving_average(gyro[imu][axis], window)
|
||||
if not args.tclr:
|
||||
# apply moving average filter with 2s width
|
||||
data.Filter(2)
|
||||
|
||||
trel = {}
|
||||
clog = c
|
||||
c = Coefficients()
|
||||
|
||||
calfile = open(args.outfile, "w")
|
||||
|
||||
for imu in accel:
|
||||
tmin = np.amin(accel[imu]['T'])
|
||||
tmax = np.amax(accel[imu]['T'])
|
||||
for imu in data.IMUs():
|
||||
tmin = np.amin(data.accel[imu]['T'])
|
||||
tmax = np.amax(data.accel[imu]['T'])
|
||||
tref = (tmin+tmax)*0.5
|
||||
|
||||
acoef[imu] = {}
|
||||
gcoef[imu] = {}
|
||||
c.set_tmin(imu, tmin)
|
||||
c.set_tmax(imu, tmax)
|
||||
|
||||
trel[imu] = accel[imu]['T'] - tref
|
||||
for axis in AXES:
|
||||
if args.online:
|
||||
fit = OnlineIMUfit()
|
||||
trel = data.accel[imu]['T'] - tref
|
||||
c.set_accel_poly(imu, axis, fit.polyfit(trel, data.accel[imu][axis] - np.median(data.accel[imu][axis]), POLY_ORDER))
|
||||
trel = data.gyro[imu]['T'] - tref
|
||||
c.set_gyro_poly(imu, axis, fit.polyfit(trel, data.gyro[imu][axis], POLY_ORDER))
|
||||
else:
|
||||
trel = data.accel[imu]['T'] - tref
|
||||
c.set_accel_poly(imu, axis, np.polyfit(trel, data.accel[imu][axis] - np.median(data.accel[imu][axis]), POLY_ORDER))
|
||||
trel = data.gyro[imu]['T'] - tref
|
||||
c.set_gyro_poly(imu, axis, np.polyfit(trel, data.gyro[imu][axis], POLY_ORDER))
|
||||
|
||||
for axis in axes:
|
||||
acoef[imu][axis] = np.polyfit(trel[imu], accel[imu][axis] - np.median(accel[imu][axis]), POLY_ORDER)
|
||||
gcoef[imu][axis] = np.polyfit(trel[imu], gyro[imu][axis], POLY_ORDER)
|
||||
|
||||
params = ''
|
||||
params += 'INS_TCAL%u_ENABLE 1\n' % (imu+1)
|
||||
params += 'INS_TCAL%u_TMIN %.1f\n' % (imu+1, tmin)
|
||||
params += 'INS_TCAL%u_TMAX %.1f\n' % (imu+1, tmax)
|
||||
# note that we don't save the first term of the polynomial as that is a
|
||||
# constant offset which is already handled by the accel/gyro constant
|
||||
# offsets. We only same the temperature dependent part of the
|
||||
# calibration
|
||||
for p in range(POLY_ORDER):
|
||||
for axis in axes:
|
||||
params += 'INS_TCAL%u_ACC%u_%s %.9f\n' % (imu+1, p+1, axis, acoef[imu][axis][POLY_ORDER-(p+1)]*SCALE_FACTOR)
|
||||
for p in range(POLY_ORDER):
|
||||
for axis in axes:
|
||||
params += 'INS_TCAL%u_GYR%u_%s %.9f\n' % (imu+1, p+1, axis, gcoef[imu][axis][POLY_ORDER-(p+1)]*SCALE_FACTOR)
|
||||
params = c.param_string(imu)
|
||||
print(params)
|
||||
calfile.write(params)
|
||||
|
||||
|
@ -221,40 +396,61 @@ def IMUfit(logfile):
|
|||
|
||||
if args.no_graph:
|
||||
return
|
||||
fig, axs = pyplot.subplots(len(gyro), 1, sharex=True)
|
||||
fig, axs = pyplot.subplots(len(data.IMUs()), 1, sharex=True)
|
||||
|
||||
if len(gyro) == 1:
|
||||
num_imus = len(data.IMUs())
|
||||
if num_imus == 1:
|
||||
axs = [axs]
|
||||
|
||||
for imu in gyro:
|
||||
for imu in data.IMUs():
|
||||
scale = math.degrees(1)
|
||||
for axis in axes:
|
||||
axs[imu].plot(gyro[imu]['time'], gyro[imu][axis]*scale, label='Uncorrected %s' % axis)
|
||||
for axis in axes:
|
||||
poly = np.poly1d(gcoef[imu][axis])
|
||||
correction = poly(trel[imu])
|
||||
axs[imu].plot(gyro[imu]['time'], (gyro[imu][axis] - correction)*scale, label='Corrected %s' % axis)
|
||||
for axis in AXES:
|
||||
axs[imu].plot(data.gyro[imu]['time'], data.gyro[imu][axis]*scale, label='Uncorrected %s' % axis)
|
||||
for axis in AXES:
|
||||
poly = np.poly1d(c.gcoef[imu][axis])
|
||||
trel = data.gyro[imu]['T'] - tref
|
||||
correction = poly(trel)
|
||||
axs[imu].plot(data.gyro[imu]['time'], (data.gyro[imu][axis] - correction)*scale, label='Corrected %s' % axis)
|
||||
if args.log_parm:
|
||||
for axis in AXES:
|
||||
if clog.enable[imu] == 0.0:
|
||||
print("IMU[%u] disabled in log parms" % imu)
|
||||
continue
|
||||
poly = np.poly1d(clog.gcoef[imu][axis])
|
||||
tmid = 0.5*(clog.tmin[imu]+clog.tmax[imu])
|
||||
correction = poly(data.gyro[imu]['T'] - tmid)
|
||||
axs[imu].plot(data.gyro[imu]['time'], (data.gyro[imu][axis] - correction)*scale, label='Corrected %s (log parm)' % axis)
|
||||
ax2 = axs[imu].twinx()
|
||||
ax2.plot(gyro[imu]['time'], gyro[imu]['T'], label='Temperature(C)', color='black')
|
||||
ax2.plot(data.gyro[imu]['time'], data.gyro[imu]['T'], label='Temperature(C)', color='black')
|
||||
ax2.legend(loc='upper right')
|
||||
axs[imu].legend(loc='upper left')
|
||||
axs[imu].set_title('IMU[%u] Gyro (deg/s)' % imu)
|
||||
|
||||
fig, axs = pyplot.subplots(len(accel), 1, sharex=True)
|
||||
if len(accel) == 1:
|
||||
fig, axs = pyplot.subplots(num_imus, 1, sharex=True)
|
||||
if num_imus == 1:
|
||||
axs = [axs]
|
||||
|
||||
for imu in accel:
|
||||
for imu in data.IMUs():
|
||||
mean = {}
|
||||
for axis in axes:
|
||||
mean[axis] = np.mean(accel[imu][axis])
|
||||
axs[imu].plot(accel[imu]['time'], accel[imu][axis] - mean[axis], label='Uncorrected %s' % axis)
|
||||
for axis in axes:
|
||||
poly = np.poly1d(acoef[imu][axis])
|
||||
correction = poly(trel[imu])
|
||||
axs[imu].plot(accel[imu]['time'], (accel[imu][axis]-mean[axis]) - correction, label='Corrected %s' % axis)
|
||||
for axis in AXES:
|
||||
mean[axis] = np.mean(data.accel[imu][axis])
|
||||
axs[imu].plot(data.accel[imu]['time'], data.accel[imu][axis] - mean[axis], label='Uncorrected %s' % axis)
|
||||
for axis in AXES:
|
||||
poly = np.poly1d(c.acoef[imu][axis])
|
||||
trel = data.accel[imu]['T'] - tref
|
||||
correction = poly(trel)
|
||||
axs[imu].plot(data.accel[imu]['time'], (data.accel[imu][axis]-mean[axis]) - correction, label='Corrected %s' % axis)
|
||||
if args.log_parm:
|
||||
for axis in AXES:
|
||||
if clog.enable[imu] == 0.0:
|
||||
print("IMU[%u] disabled in log parms" % imu)
|
||||
continue
|
||||
poly = np.poly1d(clog.acoef[imu][axis])
|
||||
tmid = 0.5*(clog.tmin[imu]+clog.tmax[imu])
|
||||
correction = poly(data.accel[imu]['T'] - tmid)
|
||||
axs[imu].plot(data.accel[imu]['time'], (data.accel[imu][axis]-mean[axis]) - correction, label='Corrected %s (log parm)' % axis)
|
||||
ax2 = axs[imu].twinx()
|
||||
ax2.plot(accel[imu]['time'], accel[imu]['T'], label='Temperature(C)', color='black')
|
||||
ax2.plot(data.accel[imu]['time'], data.accel[imu]['T'], label='Temperature(C)', color='black')
|
||||
ax2.legend(loc='upper right')
|
||||
axs[imu].legend(loc='upper left')
|
||||
axs[imu].set_title('IMU[%u] Accel (m/s^2)' % imu)
|
||||
|
|
Loading…
Reference in New Issue