This commit is contained in:
Chris Anderson 2012-01-17 17:48:01 -08:00
commit e785361547
187 changed files with 2495 additions and 1063 deletions

View File

@ -418,6 +418,7 @@ static byte led_mode = NORMAL_LEDS;
static const float t7 = 10000000.0; static const float t7 = 10000000.0;
// We use atan2 and other trig techniques to calaculate angles // We use atan2 and other trig techniques to calaculate angles
// We need to scale the longitude up to make these calcs work // We need to scale the longitude up to make these calcs work
// to account for decreasing distance between lines of longitude away from the equator
static float scaleLongUp = 1; static float scaleLongUp = 1;
// Sometimes we need to remove the scaling for distance calcs // Sometimes we need to remove the scaling for distance calcs
static float scaleLongDown = 1; static float scaleLongDown = 1;
@ -529,20 +530,12 @@ static int8_t CH7_wp_index;
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Battery Sensors // Battery Sensors
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Battery Voltage of total battery, initialized above threshold for filter // Battery Voltage of battery, initialized above threshold for filter
static float battery_voltage = LOW_VOLTAGE * 1.05; static float battery_voltage1 = LOW_VOLTAGE * 1.05;
// Battery Voltage of cell 1, initialized above threshold for filter
static float battery_voltage1 = LOW_VOLTAGE * 1.05;
// Battery Voltage of cells 1 + 2, initialized above threshold for filter
static float battery_voltage2 = LOW_VOLTAGE * 1.05;
// Battery Voltage of cells 1 + 2+3, initialized above threshold for filter
static float battery_voltage3 = LOW_VOLTAGE * 1.05;
// Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter
static float battery_voltage4 = LOW_VOLTAGE * 1.05;
// refers to the instant amp draw based on an Attopilot Current sensor // refers to the instant amp draw based on an Attopilot Current sensor
static float current_amps; static float current_amps1;
// refers to the total amps drawn based on an Attopilot Current sensor // refers to the total amps drawn based on an Attopilot Current sensor
static float current_total; static float current_total1;
// Used to track if the battery is low - LED output flashes when the batt is low // Used to track if the battery is low - LED output flashes when the batt is low
static bool low_batt = false; static bool low_batt = false;

View File

@ -78,7 +78,7 @@ static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t pack
status = MAV_STATE_STANDBY; status = MAV_STATE_STANDBY;
} }
uint16_t battery_remaining = 1000.0 * (float)(g.pack_capacity - current_total)/(float)g.pack_capacity; //Mavlink scaling 100% = 1000 uint16_t battery_remaining = 1000.0 * (float)(g.pack_capacity - current_total1)/(float)g.pack_capacity; //Mavlink scaling 100% = 1000
mavlink_msg_sys_status_send( mavlink_msg_sys_status_send(
chan, chan,
@ -86,7 +86,7 @@ static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t pack
nav_mode, nav_mode,
status, status,
0, 0,
battery_voltage * 1000, battery_voltage1 * 1000,
battery_remaining, battery_remaining,
packet_drops); packet_drops);
} }

View File

@ -321,9 +321,9 @@ static void Log_Write_Current()
DataFlash.WriteInt(g.rc_3.control_in); // 1 DataFlash.WriteInt(g.rc_3.control_in); // 1
DataFlash.WriteLong(throttle_integrator); // 2 DataFlash.WriteLong(throttle_integrator); // 2
DataFlash.WriteInt(battery_voltage * 100.0); // 3 DataFlash.WriteInt(battery_voltage1 * 100.0); // 3
DataFlash.WriteInt(current_amps * 100.0); // 4 DataFlash.WriteInt(current_amps1 * 100.0); // 4
DataFlash.WriteInt(current_total); // 5 DataFlash.WriteInt(current_total1); // 5
DataFlash.WriteByte(END_BYTE); DataFlash.WriteByte(END_BYTE);
} }

View File

@ -198,7 +198,7 @@ public:
AP_Int16 RTL_altitude; AP_Int16 RTL_altitude;
AP_Int8 sonar_enabled; AP_Int8 sonar_enabled;
AP_Int8 sonar_type; // 0 = XL, 1 = LV, 2 = XLL (XL with 10m range) AP_Int8 sonar_type; // 0 = XL, 1 = LV, 2 = XLL (XL with 10m range)
AP_Int8 battery_monitoring; // 0=disabled, 1=3 cell lipo, 2=4 cell lipo, 3=total voltage only, 4=total voltage and current AP_Int8 battery_monitoring; // 0=disabled, 3=voltage only, 4=voltage and current
AP_Int16 pack_capacity; // Battery pack capacity less reserve AP_Int16 pack_capacity; // Battery pack capacity less reserve
AP_Int8 compass_enabled; AP_Int8 compass_enabled;
AP_Int8 optflow_enabled; AP_Int8 optflow_enabled;

View File

@ -118,6 +118,8 @@
# define USB_MUX_PIN -1 # define USB_MUX_PIN -1
# define CLI_SLIDER_ENABLED DISABLED # define CLI_SLIDER_ENABLED DISABLED
# define OPTFLOW_CS_PIN 34 # define OPTFLOW_CS_PIN 34
# define BATTERY_PIN_1 0
# define CURRENT_PIN_1 1
#elif CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 #elif CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
# define A_LED_PIN 27 # define A_LED_PIN 27
# define B_LED_PIN 26 # define B_LED_PIN 26
@ -129,6 +131,8 @@
# define CLI_SLIDER_ENABLED DISABLED # define CLI_SLIDER_ENABLED DISABLED
# define USB_MUX_PIN 23 # define USB_MUX_PIN 23
# define OPTFLOW_CS_PIN A6 # define OPTFLOW_CS_PIN A6
# define BATTERY_PIN_1 1
# define CURRENT_PIN_1 2
#endif #endif
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////

View File

@ -61,10 +61,10 @@
// //
// //
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
/* Camera Pitch and Camera Roll: Not yet defined for APM2 /* Camera Pitch and Camera Roll: Not yet defined for APM2
* They will likely be dependent on the frame config */ * They will likely be dependent on the frame config */
# define CH_CAM_PITCH (-1) # define CH_CAM_PITCH CH_11
# define CH_CAM_ROLL (-1) # define CH_CAM_ROLL CH_10
#elif CONFIG_APM_HARDWARE == APM_HARDWARE_APM1 #elif CONFIG_APM_HARDWARE == APM_HARDWARE_APM1
# define CH_CAM_PITCH CH_5 # define CH_CAM_PITCH CH_5
# define CH_CAM_ROLL CH_6 # define CH_CAM_ROLL CH_6

View File

@ -325,15 +325,8 @@ enum gcs_severity {
#define AN14 68 // NC #define AN14 68 // NC
#define AN15 69 // NC #define AN15 69 // NC
#define VOLTAGE_PIN_0 0 // These are the pins for current sensor: voltage
#define CURRENT_PIN_1 1 // and current
#define RELAY_PIN 47 #define RELAY_PIN 47
#define BATTERY_PIN1 0 // These are the pins for the voltage dividers
#define BATTERY_PIN2 1
#define BATTERY_PIN3 2
#define BATTERY_PIN4 3
#define PIEZO_PIN AN5 //Last pin on the back ADC connector #define PIEZO_PIN AN5 //Last pin on the back ADC connector

View File

@ -100,30 +100,25 @@ static void init_optflow()
static void read_battery(void) static void read_battery(void)
{ {
battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN1)) * .1 + battery_voltage1 * .9;
battery_voltage2 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN2)) * .1 + battery_voltage2 * .9;
battery_voltage3 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN3)) * .1 + battery_voltage3 * .9;
battery_voltage4 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN4)) * .1 + battery_voltage4 * .9;
if(g.battery_monitoring == 1) if(g.battery_monitoring == 0){
battery_voltage = battery_voltage3; // set total battery voltage, for telemetry stream battery_voltage1 = 0;
return;
if(g.battery_monitoring == 2) }
battery_voltage = battery_voltage4;
if(g.battery_monitoring == 3 || g.battery_monitoring == 4)
battery_voltage = battery_voltage1;
if(g.battery_monitoring == 3 || g.battery_monitoring == 4) {
battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN_1)) * .1 + battery_voltage1 * .9;
}
if(g.battery_monitoring == 4) { if(g.battery_monitoring == 4) {
current_amps = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps * .9; //reads power sensor current pin current_amps1 = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps1 * .9; //reads power sensor current pin
current_total += current_amps * 0.0278; // called at 100ms on average current_total1 += current_amps1 * 0.02778; // called at 100ms on average, .0002778 is 1/3600 (conversion to hours)
} }
#if BATTERY_EVENT == 1 #if BATTERY_EVENT == 1
//if(battery_voltage < g.low_voltage) //if(battery_voltage < g.low_voltage)
// low_battery_event(); // low_battery_event();
if((battery_voltage < g.low_voltage) || (g.battery_monitoring == 4 && current_total > g.pack_capacity)){ if((battery_voltage1 < g.low_voltage) || (g.battery_monitoring == 4 && current_total1 > g.pack_capacity)){
low_battery_event(); low_battery_event();
#if PIEZO_LOW_VOLTAGE == 1 #if PIEZO_LOW_VOLTAGE == 1

View File

@ -395,7 +395,7 @@ setup_batt_monitor(uint8_t argc, const Menu::arg *argv)
g.battery_monitoring.set_and_save(argv[1].i); g.battery_monitoring.set_and_save(argv[1].i);
} else { } else {
Serial.printf_P(PSTR("\nOp: off, 1-4")); Serial.printf_P(PSTR("\nOp: off, 3-4"));
} }
report_batt_monitor(); report_batt_monitor();
@ -778,8 +778,6 @@ static void report_batt_monitor()
Serial.printf_P(PSTR("\nBatt Mon:\n")); Serial.printf_P(PSTR("\nBatt Mon:\n"));
print_divider(); print_divider();
if(g.battery_monitoring == 0) print_enabled(false); if(g.battery_monitoring == 0) print_enabled(false);
if(g.battery_monitoring == 1) Serial.printf_P(PSTR("3c"));
if(g.battery_monitoring == 2) Serial.printf_P(PSTR("4c"));
if(g.battery_monitoring == 3) Serial.printf_P(PSTR("volts")); if(g.battery_monitoring == 3) Serial.printf_P(PSTR("volts"));
if(g.battery_monitoring == 4) Serial.printf_P(PSTR("volts and cur")); if(g.battery_monitoring == 4) Serial.printf_P(PSTR("volts and cur"));
print_blanks(2); print_blanks(2);

View File

@ -21,7 +21,6 @@ static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
//static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv); //static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv);
//static int8_t test_reverse(uint8_t argc, const Menu::arg *argv); //static int8_t test_reverse(uint8_t argc, const Menu::arg *argv);
static int8_t test_tuning(uint8_t argc, const Menu::arg *argv); static int8_t test_tuning(uint8_t argc, const Menu::arg *argv);
static int8_t test_current(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv); static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp(uint8_t argc, const Menu::arg *argv); static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
#if HIL_MODE != HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_ATTITUDE
@ -69,7 +68,6 @@ const struct Menu::command test_menu_commands[] PROGMEM = {
{"battery", test_battery}, {"battery", test_battery},
{"tune", test_tuning}, {"tune", test_tuning},
//{"tri", test_tri}, //{"tri", test_tri},
{"current", test_current},
{"relay", test_relay}, {"relay", test_relay},
{"wp", test_wp}, {"wp", test_wp},
//{"nav", test_nav}, //{"nav", test_nav},
@ -713,26 +711,6 @@ test_gps(uint8_t argc, const Menu::arg *argv)
} }
//*/ //*/
static int8_t
test_battery(uint8_t argc, const Menu::arg *argv)
{
#if BATTERY_EVENT == 1
for (int i = 0; i < 20; i++){
delay(20);
read_battery();
}
Serial.printf_P(PSTR("Volts: 1:%2.2f, 2:%2.2f, 3:%2.2f, 4:%2.2f\n"),
battery_voltage1,
battery_voltage2,
battery_voltage3,
battery_voltage4);
#else
Serial.printf_P(PSTR("Not enabled\n"));
#endif
return (0);
}
static int8_t static int8_t
test_tuning(uint8_t argc, const Menu::arg *argv) test_tuning(uint8_t argc, const Menu::arg *argv)
{ {
@ -751,7 +729,7 @@ test_tuning(uint8_t argc, const Menu::arg *argv)
} }
static int8_t static int8_t
test_current(uint8_t argc, const Menu::arg *argv) test_battery(uint8_t argc, const Menu::arg *argv)
{ {
print_hit_enter(); print_hit_enter();
//delta_ms_medium_loop = 100; //delta_ms_medium_loop = 100;
@ -760,11 +738,17 @@ test_current(uint8_t argc, const Menu::arg *argv)
delay(100); delay(100);
read_radio(); read_radio();
read_battery(); read_battery();
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"), if (g.battery_monitoring == 3){
battery_voltage, Serial.printf_P(PSTR("V: %4.4f\n"),
current_amps, battery_voltage1,
current_total); current_amps1,
current_total1);
} else {
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, Ah: %4.4f\n"),
battery_voltage1,
current_amps1,
current_total1);
}
APM_RC.OutputCh(MOT_1, g.rc_3.radio_in); APM_RC.OutputCh(MOT_1, g.rc_3.radio_in);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_in); APM_RC.OutputCh(MOT_2, g.rc_3.radio_in);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_in); APM_RC.OutputCh(MOT_3, g.rc_3.radio_in);

View File

@ -1,6 +1,6 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduPlane V2.27" #define THISFIRMWARE "ArduPlane V2.28"
/* /*
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier
@ -240,6 +240,15 @@ AP_AnalogSource_Arduino pitot_analog_source(CONFIG_PITOT_SOURCE_ANALOG_PIN, 4.0)
AP_RangeFinder_MaxsonarXL sonar(&pitot_analog_source, &sonar_mode_filter); AP_RangeFinder_MaxsonarXL sonar(&pitot_analog_source, &sonar_mode_filter);
#endif #endif
AP_Relay relay;
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
AP_Mount camera_mount(g_gps, &dcm);
#endif
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
// Global variables // Global variables
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
@ -354,162 +363,263 @@ static int ground_start_avg;
// If we do not detect GPS at startup, we stop trying and assume GPS is not connected // If we do not detect GPS at startup, we stop trying and assume GPS is not connected
static bool GPS_enabled = false; static bool GPS_enabled = false;
////////////////////////////////////////////////////////////////////////////////
// Location & Navigation // Location & Navigation
// --------------------- ////////////////////////////////////////////////////////////////////////////////
// Constants
const float radius_of_earth = 6378100; // meters const float radius_of_earth = 6378100; // meters
const float gravity = 9.81; // meters/ sec^2 const float gravity = 9.81; // meters/ sec^2
static long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate // This is the currently calculated direction to fly.
static long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target // deg * 100 : 0 to 360
static long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target static long nav_bearing;
static float nav_gain_scaler = 1; // Gain scaling for headwind/tailwind TODO: why does this variable need to be initialized to 1? // This is the direction to the next waypoint or loiter center
// deg * 100 : 0 to 360
static long target_bearing;
//This is the direction from the last waypoint to the next waypoint
// deg * 100 : 0 to 360
static long crosstrack_bearing;
// A gain scaler to account for ground speed/headwind/tailwind
static float nav_gain_scaler = 1;
// Direction held during phases of takeoff and landing
// deg * 100 dir of plane, A value of -1 indicates the course has not been set/is not in use
static long hold_course = -1; // deg * 100 dir of plane static long hold_course = -1; // deg * 100 dir of plane
static byte nav_command_index; // active nav command memory location // There may be two active commands in Auto mode.
static byte non_nav_command_index; // active non-nav command memory location // This indicates the active navigation command by index number
static byte nav_command_ID = NO_COMMAND; // active nav command ID static byte nav_command_index;
static byte non_nav_command_ID = NO_COMMAND; // active non-nav command ID // This indicates the active non-navigation command by index number
static byte non_nav_command_index;
// This is the command type (eg navigate to waypoint) of the active navigation command
static byte nav_command_ID = NO_COMMAND;
static byte non_nav_command_ID = NO_COMMAND;
////////////////////////////////////////////////////////////////////////////////
// Airspeed // Airspeed
// -------- ////////////////////////////////////////////////////////////////////////////////
static int airspeed; // m/s * 100 // The current airspeed estimate/measurement in centimeters per second
static int airspeed_nudge; // m/s * 100 : additional airspeed based on throttle stick position in top 1/2 of range static int airspeed;
static long target_airspeed; // m/s * 100 (used for Auto-flap deployment in FBW_B mode) // The calculated airspeed to use in FBW-B. Also used in higher modes for insuring min ground speed is met.
static float airspeed_error; // m/s * 100 // Also used for flap deployment criteria. Centimeters per second.static long target_airspeed;
static long energy_error; // energy state error (kinetic + potential) for altitude hold static long target_airspeed;
static long airspeed_energy_error; // kinetic portion of energy error (m^2/s^2) // The difference between current and desired airspeed. Used in the pitch controller. Centimeters per second.
static float airspeed_error;
// The calculated total energy error (kinetic (altitude) plus potential (airspeed)).
// Used by the throttle controller
static long energy_error;
// kinetic portion of energy error (m^2/s^2)
static long airspeed_energy_error;
// An amount that the airspeed should be increased in auto modes based on the user positioning the
// throttle stick in the top half of the range. Centimeters per second.
static int airspeed_nudge;
// Similar to airspeed_nudge, but used when no airspeed sensor.
// 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel
static int throttle_nudge = 0;
////////////////////////////////////////////////////////////////////////////////
// Ground speed // Ground speed
static long groundspeed_undershoot = 0; // m/s * 100 (>=0, where > 0 => amount below min ground speed) ////////////////////////////////////////////////////////////////////////////////
// The amount current ground speed is below min ground speed. Centimeters per second
static long groundspeed_undershoot = 0;
////////////////////////////////////////////////////////////////////////////////
// Location Errors // Location Errors
// --------------- ////////////////////////////////////////////////////////////////////////////////
static long bearing_error; // deg * 100 : 0 to 36000 // Difference between current bearing and desired bearing. Hundredths of a degree
static long altitude_error; // meters * 100 we are off in altitude static long bearing_error;
static float crosstrack_error; // meters we are off trackline // Difference between current altitude and desired altitude. Centimeters
static long altitude_error;
// Distance perpandicular to the course line that we are off trackline. Meters
static float crosstrack_error;
////////////////////////////////////////////////////////////////////////////////
// Battery Sensors // Battery Sensors
// --------------- ////////////////////////////////////////////////////////////////////////////////
static float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter // Battery pack 1 voltage. Initialized above the low voltage threshold to pre-load the filter and prevent low voltage events at startup.
static float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter static float battery_voltage1 = LOW_VOLTAGE * 1.05;
static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter // Battery pack 1 instantaneous currrent draw. Amperes
static float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter static float current_amps1;
static float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter // Totalized current (Amp-hours) from battery 1
static float current_total1;
static float current_amps; // To Do - Add support for second battery pack
static float current_total; //static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery 2 Voltage, initialized above threshold for filter
//static float current_amps2; // Current (Amperes) draw from battery 2
//static float current_total2; // Totalized current (Amp-hours) from battery 2
////////////////////////////////////////////////////////////////////////////////
// Airspeed Sensors // Airspeed Sensors
// ---------------- ////////////////////////////////////////////////////////////////////////////////
static float airspeed_raw; // Airspeed Sensor - is a float to better handle filtering // Raw differential pressure measurement (filtered). ADC units
static float airspeed_pressure; // airspeed as a pressure value static float airspeed_raw;
// Raw differential pressure less the zero pressure offset. ADC units
// Barometer Sensor variables static float airspeed_pressure;
// --------------------------
static unsigned long abs_pressure;
////////////////////////////////////////////////////////////////////////////////
// Altitude Sensor variables // Altitude Sensor variables
// ---------------------- ////////////////////////////////////////////////////////////////////////////////
// Raw absolute pressure measurement (filtered). ADC units
static unsigned long abs_pressure;
// Altitude from the sonar sensor. Meters. Not yet implemented.
static int sonar_alt; static int sonar_alt;
////////////////////////////////////////////////////////////////////////////////
// flight mode specific // flight mode specific
// -------------------- ////////////////////////////////////////////////////////////////////////////////
static bool takeoff_complete = true; // Flag for using gps ground course instead of IMU yaw. Set false when takeoff command processes. // Flag for using gps ground course instead of IMU yaw. Set false when takeoff command in process.
static bool takeoff_complete = true;
// Flag to indicate if we have landed.
//Set land_complete if we are within 2 seconds distance or within 3 meters altitude of touchdown
static bool land_complete; static bool land_complete;
// Altitude threshold to complete a takeoff command in autonomous modes. Centimeters
static long takeoff_altitude; static long takeoff_altitude;
// static int landing_distance; // meters; // Pitch to hold during landing command in the no airspeed sensor case. Hundredths of a degree
static int landing_pitch; // pitch for landing set by commands static int landing_pitch;
// Minimum pitch to hold during takeoff command execution. Hundredths of a degree
static int takeoff_pitch; static int takeoff_pitch;
////////////////////////////////////////////////////////////////////////////////
// Loiter management // Loiter management
// ----------------- ////////////////////////////////////////////////////////////////////////////////
static long old_target_bearing; // deg * 100 // Previous target bearing. Used to calculate loiter rotations. Hundredths of a degree
static int loiter_total; // deg : how many times to loiter * 360 static long old_target_bearing;
static int loiter_delta; // deg : how far we just turned // Total desired rotation in a loiter. Used for Loiter Turns commands. Degrees
static int loiter_sum; // deg : how far we have turned around a waypoint static int loiter_total;
static long loiter_time; // millis : when we started LOITER mode // The amount in degrees we have turned since recording old_target_bearing
static int loiter_time_max; // millis : how long to stay in LOITER mode static int loiter_delta;
// Total rotation in a loiter. Used for Loiter Turns commands and to check for missed waypoints. Degrees
static int loiter_sum;
// The amount of time we have been in a Loiter. Used for the Loiter Time command. Milliseconds.
static long loiter_time;
// The amount of time we should stay in a loiter for the Loiter Time command. Milliseconds.
static int loiter_time_max;
// these are the values for navigation control functions ////////////////////////////////////////////////////////////////////////////////
// ---------------------------------------------------- // Navigation control variables
static long nav_roll; // deg * 100 : target roll angle ////////////////////////////////////////////////////////////////////////////////
static long nav_pitch; // deg * 100 : target pitch angle // The instantaneous desired bank angle. Hundredths of a degree
static int throttle_nudge = 0; // 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel static long nav_roll;
// The instantaneous desired pitch angle. Hundredths of a degree
static long nav_pitch;
// Waypoints ////////////////////////////////////////////////////////////////////////////////
// --------- // Waypoint distances
static long wp_distance; // meters - distance between plane and next waypoint ////////////////////////////////////////////////////////////////////////////////
static long wp_totalDistance; // meters - distance between old and next waypoint // Distance between plane and next waypoint. Meters
static long wp_distance;
// Distance between previous and next waypoint. Meters
static long wp_totalDistance;
////////////////////////////////////////////////////////////////////////////////
// repeating event control // repeating event control
// ----------------------- ////////////////////////////////////////////////////////////////////////////////
static byte event_id; // what to do - see defines // Flag indicating current event type
static long event_timer; // when the event was asked for in ms static byte event_id;
static uint16_t event_delay; // how long to delay the next firing of event in millis // when the event was started in ms
static int event_repeat = 0; // how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles static long event_timer;
static int event_value; // per command value, such as PWM for servos // how long to delay the next firing of event in millis
static int event_undo_value; // the value used to cycle events (alternate value to event_value) static uint16_t event_delay;
// how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles
static int event_repeat = 0;
// per command value, such as PWM for servos
static int event_value;
// the value used to cycle events (alternate value to event_value)
static int event_undo_value;
// delay command ////////////////////////////////////////////////////////////////////////////////
// -------------- // Conditional command
static long condition_value; // used in condition commands (eg delay, change alt, etc.) ////////////////////////////////////////////////////////////////////////////////
// A value used in condition commands (eg delay, change alt, etc.)
// For example in a change altitude command, it is the altitude to change to.
static long condition_value;
// A starting value used to check the status of a conditional command.
// For example in a delay command the condition_start records that start time for the delay
static long condition_start; static long condition_start;
static int condition_rate; // A value used in condition commands. For example the rate at which to change altitude.
static int condition_rate;
////////////////////////////////////////////////////////////////////////////////
// 3D Location vectors // 3D Location vectors
// ------------------- // Location structure defined in AP_Common
static struct Location home; // home location ////////////////////////////////////////////////////////////////////////////////
static struct Location prev_WP; // last waypoint // The home location used for RTL. The location is set when we first get stable GPS lock
static struct Location current_loc; // current location static struct Location home;
static struct Location next_WP; // next waypoint // Flag for if we have g_gps lock and have set the home location
static struct Location guided_WP; // guided mode waypoint static bool home_is_set;
static struct Location next_nav_command; // command preloaded // The location of the previous waypoint. Used for track following and altitude ramp calculations
static struct Location next_nonnav_command; // command preloaded static struct Location prev_WP;
static long target_altitude; // used for altitude management between waypoints // The plane's current location
static long offset_altitude; // used for altitude management between waypoints static struct Location current_loc;
static bool home_is_set; // Flag for if we have g_gps lock and have set the home location // The location of the current/active waypoint. Used for altitude ramp, track following and loiter calculations.
static struct Location next_WP;
// The location of the active waypoint in Guided mode.
static struct Location guided_WP;
// The location structure information from the Nav command being processed
static struct Location next_nav_command;
// The location structure information from the Non-Nav command being processed
static struct Location next_nonnav_command;
////////////////////////////////////////////////////////////////////////////////
// Altitude / Climb rate control
////////////////////////////////////////////////////////////////////////////////
// The current desired altitude. Altitude is linearly ramped between waypoints. Centimeters
static long target_altitude;
// Altitude difference between previous and current waypoint. Centimeters
static long offset_altitude;
////////////////////////////////////////////////////////////////////////////////
// IMU variables // IMU variables
// ------------- ////////////////////////////////////////////////////////////////////////////////
static float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm) // The main loop execution time. Seconds
//This is the time between calls to the DCM algorithm and is the Integration time for the gyros.
static float G_Dt = 0.02;
////////////////////////////////////////////////////////////////////////////////
// Performance monitoring // Performance monitoring
// ---------------------- ////////////////////////////////////////////////////////////////////////////////
static long perf_mon_timer; // Metric based on accel gain deweighting // Timer used to accrue data and trigger recording of the performanc monitoring log message
static int G_Dt_max = 0; // Max main loop cycle time in milliseconds static long perf_mon_timer;
// The maximum main loop execution time recorded in the current performance monitoring interval
static int G_Dt_max = 0;
// The number of gps fixes recorded in the current performance monitoring interval
static int gps_fix_count = 0; static int gps_fix_count = 0;
// A variable used by developers to track performanc metrics.
// Currently used to record the number of GCS heartbeat messages received
static int pmTest1 = 0; static int pmTest1 = 0;
////////////////////////////////////////////////////////////////////////////////
// System Timers // System Timers
// -------------- ////////////////////////////////////////////////////////////////////////////////
static unsigned long fast_loopTimer; // Time in miliseconds of main control loop // Time in miliseconds of start of main control loop. Milliseconds
static unsigned long fast_loopTimeStamp; // Time Stamp when fast loop was complete static unsigned long fast_loopTimer;
static uint8_t delta_ms_fast_loop; // Delta Time in miliseconds // Time Stamp when fast loop was complete. Milliseconds
static unsigned long fast_loopTimeStamp;
// Number of milliseconds used in last main loop cycle
static uint8_t delta_ms_fast_loop;
// Counter of main loop executions. Used for performance monitoring and failsafe processing
static uint16_t mainLoop_count; static uint16_t mainLoop_count;
static unsigned long medium_loopTimer; // Time in miliseconds of medium loop // Time in miliseconds of start of medium control loop. Milliseconds
static byte medium_loopCounter; // Counters for branching from main control loop to slower loops static unsigned long medium_loopTimer;
// Counters for branching from main control loop to slower loops
static byte medium_loopCounter;
// Number of milliseconds used in last medium loop cycle
static uint8_t delta_ms_medium_loop; static uint8_t delta_ms_medium_loop;
// Counters for branching from medium control loop to slower loops
static byte slow_loopCounter; static byte slow_loopCounter;
// Counter to trigger execution of very low rate processes
static byte superslow_loopCounter; static byte superslow_loopCounter;
static byte counter_one_herz; // Counter to trigger execution of 1 Hz processes
static byte counter_one_herz;
static unsigned long nav_loopTimer; // used to track the elapsed time for GPS nav // used to track the elapsed time for navigation PID integral terms
static unsigned long nav_loopTimer;
// Elapsed time since last call to navigation pid functions
static unsigned long dTnav;
// % MCU cycles used
static float load;
static unsigned long dTnav; // Delta Time in milliseconds for navigation computations
static float load; // % MCU cycles used
AP_Relay relay;
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
AP_Mount camera_mount(g_gps, &dcm);
#endif
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////

View File

@ -206,11 +206,11 @@ static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t pack
uint16_t battery_current = -1; uint16_t battery_current = -1;
uint8_t battery_remaining = -1; uint8_t battery_remaining = -1;
if (current_total != 0 && g.pack_capacity != 0) { if (current_total1 != 0 && g.pack_capacity != 0) {
battery_remaining = (100.0 * (g.pack_capacity - current_total) / g.pack_capacity); battery_remaining = (100.0 * (g.pack_capacity - current_total1) / g.pack_capacity);
} }
if (current_total != 0) { if (current_total1 != 0) {
battery_current = current_amps * 100; battery_current = current_amps1 * 100;
} }
mavlink_msg_sys_status_send( mavlink_msg_sys_status_send(
@ -219,7 +219,7 @@ static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t pack
control_sensors_enabled, control_sensors_enabled,
control_sensors_health, control_sensors_health,
(uint16_t)(load * 1000), (uint16_t)(load * 1000),
battery_voltage * 1000, // mV battery_voltage1 * 1000, // mV
battery_current, // in 10mA units battery_current, // in 10mA units
battery_remaining, // in % battery_remaining, // in %
0, // comm drops %, 0, // comm drops %,
@ -270,7 +270,7 @@ static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t pack
} }
uint8_t status = MAV_STATE_ACTIVE; uint8_t status = MAV_STATE_ACTIVE;
uint16_t battery_remaining = 1000.0 * (float)(g.pack_capacity - current_total)/(float)g.pack_capacity; //Mavlink scaling 100% = 1000 uint16_t battery_remaining = 1000.0 * (float)(g.pack_capacity - current_total1)/(float)g.pack_capacity; //Mavlink scaling 100% = 1000
mavlink_msg_sys_status_send( mavlink_msg_sys_status_send(
chan, chan,
@ -278,7 +278,7 @@ static NOINLINE void send_extended_status1(mavlink_channel_t chan, uint16_t pack
nav_mode, nav_mode,
status, status,
load * 1000, load * 1000,
battery_voltage * 1000, battery_voltage1 * 1000,
battery_remaining, battery_remaining,
packet_drops); packet_drops);
#endif // MAVLINK10 #endif // MAVLINK10

View File

@ -386,9 +386,9 @@ static void Log_Write_Current()
DataFlash.WriteByte(HEAD_BYTE2); DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CURRENT_MSG); DataFlash.WriteByte(LOG_CURRENT_MSG);
DataFlash.WriteInt(g.channel_throttle.control_in); DataFlash.WriteInt(g.channel_throttle.control_in);
DataFlash.WriteInt((int)(battery_voltage * 100.0)); DataFlash.WriteInt((int)(battery_voltage1 * 100.0));
DataFlash.WriteInt((int)(current_amps * 100.0)); DataFlash.WriteInt((int)(current_amps1 * 100.0));
DataFlash.WriteInt((int)current_total); DataFlash.WriteInt((int)current_total1);
DataFlash.WriteByte(END_BYTE); DataFlash.WriteByte(END_BYTE);
} }

View File

@ -330,7 +330,7 @@ public:
AP_Int32 ground_pressure; AP_Int32 ground_pressure;
AP_Int8 compass_enabled; AP_Int8 compass_enabled;
AP_Int16 angle_of_attack; AP_Int16 angle_of_attack;
AP_Int8 battery_monitoring; // 0=disabled, 1=3 cell lipo, 2=4 cell lipo, 3=total voltage only, 4=total voltage and current AP_Int8 battery_monitoring; // 0=disabled, 3=voltage only, 4=voltage and current
AP_Float volt_div_ratio; AP_Float volt_div_ratio;
AP_Float curr_amp_per_volt; AP_Float curr_amp_per_volt;
AP_Float input_voltage; AP_Float input_voltage;

View File

@ -64,20 +64,6 @@ handle_process_condition_command()
do_change_alt(); do_change_alt();
break; break;
/* case MAV_CMD_NAV_LAND_OPTIONS: // TODO - Add the command or equiv to MAVLink (repair in verify_condition() also)
gcs_send_text_P(SEVERITY_LOW,PSTR("Landing options set"));
// pitch in deg, airspeed m/s, throttle %, track WP 1 or 0
landing_pitch = next_nav_command.lng * 100;
g.airspeed_cruise = next_nav_command.alt * 100;
g.throttle_cruise = next_nav_command.lat;
landing_distance = next_nav_command.p1;
SendDebug_P("MSG: throttle_cruise = ");
SendDebugln(g.throttle_cruise,DEC);
break;
*/
default: default:
break; break;
} }

View File

@ -87,6 +87,8 @@
# define PUSHBUTTON_PIN 41 # define PUSHBUTTON_PIN 41
# define USB_MUX_PIN -1 # define USB_MUX_PIN -1
# define CONFIG_RELAY ENABLED # define CONFIG_RELAY ENABLED
# define BATTERY_PIN_1 0
# define CURRENT_PIN_1 1
#elif CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 #elif CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
# define A_LED_PIN 27 # define A_LED_PIN 27
# define B_LED_PIN 26 # define B_LED_PIN 26
@ -97,6 +99,8 @@
# define PUSHBUTTON_PIN (-1) # define PUSHBUTTON_PIN (-1)
# define CLI_SLIDER_ENABLED DISABLED # define CLI_SLIDER_ENABLED DISABLED
# define USB_MUX_PIN 23 # define USB_MUX_PIN 23
# define BATTERY_PIN_1 1
# define CURRENT_PIN_1 2
#endif #endif
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
@ -161,10 +165,10 @@
# endif # endif
#elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN #elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN
# ifndef CONFIG_PITOT_SOURCE_ANALOG_PIN # ifndef CONFIG_PITOT_SOURCE_ANALOG_PIN
# define CONFIG_PITOT_SOURCE_ANALOG_PIN AN4 # define CONFIG_PITOT_SOURCE_ANALOG_PIN 0
# endif # endif
#else #else
# warning Invalid value for CONFIG_PITOT_SOURCE, disabling sonar # warning Invalid value for CONFIG_PITOT_SOURCE, disabling airspeed
# undef PITOT_ENABLED # undef PITOT_ENABLED
# define PITOT_ENABLED DISABLED # define PITOT_ENABLED DISABLED
#endif #endif
@ -173,10 +177,9 @@
# define SONAR_TYPE MAX_SONAR_LV // MAX_SONAR_XL, # define SONAR_TYPE MAX_SONAR_LV // MAX_SONAR_XL,
#endif #endif
/* In ArduPlane PITOT usually takes the place of SONAR, but some bits #ifndef SONAR_ENABLED
* still depend on SONAR. #define SONAR_ENABLED DISABLED
*/ #endif
#define SONAR_ENABLED PITOT_ENABLED
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
// HIL_MODE OPTIONAL // HIL_MODE OPTIONAL
@ -225,12 +228,17 @@
# define LOW_VOLTAGE 9.6 # define LOW_VOLTAGE 9.6
#endif #endif
#ifndef VOLT_DIV_RATIO #ifndef VOLT_DIV_RATIO
# define VOLT_DIV_RATIO 3.56 # define VOLT_DIV_RATIO 3.56 // This is the proper value for an on-board APM1 voltage divider with a 3.9kOhm resistor
//# define VOLT_DIV_RATIO 15.70 // This is the proper value for the AttoPilot 50V/90A sensor
//# define VOLT_DIV_RATIO 4.127 // This is the proper value for the AttoPilot 13.6V/45A sensor
#endif #endif
#ifndef CURR_AMP_PER_VOLT #ifndef CURR_AMP_PER_VOLT
# define CURR_AMP_PER_VOLT 27.32 # define CURR_AMP_PER_VOLT 27.32 // This is the proper value for the AttoPilot 50V/90A sensor
//# define CURR_AMP_PER_VOLT 13.66 // This is the proper value for the AttoPilot 13.6V/45A sensor
#endif #endif
#ifndef CURR_AMPS_OFFSET #ifndef CURR_AMPS_OFFSET
# define CURR_AMPS_OFFSET 0.0 # define CURR_AMPS_OFFSET 0.0
#endif #endif

View File

@ -183,18 +183,8 @@ enum gcs_severity {
#define BATTERY_VOLTAGE(x) (x*(g.input_voltage/1024.0))*g.volt_div_ratio #define BATTERY_VOLTAGE(x) (x*(g.input_voltage/1024.0))*g.volt_div_ratio
#define CURRENT_AMPS(x) ((x*(g.input_voltage/1024.0))-CURR_AMPS_OFFSET)*g.curr_amp_per_volt #define CURRENT_AMPS(x) ((x*(g.input_voltage/1024.0))-CURR_AMPS_OFFSET)*g.curr_amp_per_volt
#define AIRSPEED_CH 7 // The external ADC channel for the airspeed sensor
#define BATTERY_PIN1 0 // These are the pins for the voltage dividers
#define BATTERY_PIN2 1
#define BATTERY_PIN3 2
#define BATTERY_PIN4 3
#define VOLTAGE_PIN_0 0 // These are the pins for current sensor: voltage
#define CURRENT_PIN_1 1 // and current
#define RELAY_PIN 47 #define RELAY_PIN 47

View File

@ -106,25 +106,21 @@ static void zero_airspeed(void)
static void read_battery(void) static void read_battery(void)
{ {
battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN1)) * .1 + battery_voltage1 * .9; if(g.battery_monitoring == 0) {
battery_voltage2 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN2)) * .1 + battery_voltage2 * .9; battery_voltage1 = 0;
battery_voltage3 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN3)) * .1 + battery_voltage3 * .9; return;
battery_voltage4 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN4)) * .1 + battery_voltage4 * .9; }
if(g.battery_monitoring == 1)
battery_voltage = battery_voltage3; // set total battery voltage, for telemetry stream
if(g.battery_monitoring == 2)
battery_voltage = battery_voltage4;
if(g.battery_monitoring == 3 || g.battery_monitoring == 4) if(g.battery_monitoring == 3 || g.battery_monitoring == 4)
battery_voltage = battery_voltage1; battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN_1)) * .1 + battery_voltage1 * .9;
if(g.battery_monitoring == 4) { if(g.battery_monitoring == 4) {
current_amps = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps * .9; //reads power sensor current pin current_amps1 = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps1 * .9; //reads power sensor current pin
current_total += current_amps * (float)delta_ms_medium_loop * 0.000278; current_total1 += current_amps1 * (float)delta_ms_medium_loop * 0.0002778; // .0002778 is 1/3600 (conversion to hours)
} }
#if BATTERY_EVENT == ENABLED #if BATTERY_EVENT == ENABLED
if(battery_voltage < LOW_VOLTAGE) low_battery_event(); if(battery_voltage1 < LOW_VOLTAGE) low_battery_event();
if(g.battery_monitoring == 4 && current_total > g.pack_capacity) low_battery_event(); if(g.battery_monitoring == 4 && current_total1 > g.pack_capacity) low_battery_event();
#endif #endif
} }

View File

@ -301,8 +301,11 @@ setup_compass(uint8_t argc, const Menu::arg *argv)
} else if (!strcmp_P(argv[1].str, PSTR("off"))) { } else if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.compass_enabled = false; g.compass_enabled = false;
} else if (!strcmp_P(argv[1].str, PSTR("reset"))) {
compass.set_offsets(0,0,0);
} else { } else {
Serial.printf_P(PSTR("\nOptions:[on,off]\n")); Serial.printf_P(PSTR("\nOptions:[on,off,reset]\n"));
report_compass(); report_compass();
return 0; return 0;
} }
@ -319,7 +322,7 @@ setup_batt_monitor(uint8_t argc, const Menu::arg *argv)
g.battery_monitoring.set_and_save(argv[1].i); g.battery_monitoring.set_and_save(argv[1].i);
} else { } else {
Serial.printf_P(PSTR("\nOptions: 0-4")); Serial.printf_P(PSTR("\nOptions: 3-4"));
} }
report_batt_monitor(); report_batt_monitor();
@ -336,8 +339,6 @@ static void report_batt_monitor()
Serial.printf_P(PSTR("Batt Mointor\n")); Serial.printf_P(PSTR("Batt Mointor\n"));
print_divider(); print_divider();
if(g.battery_monitoring == 0) Serial.printf_P(PSTR("Batt monitoring disabled")); if(g.battery_monitoring == 0) Serial.printf_P(PSTR("Batt monitoring disabled"));
if(g.battery_monitoring == 1) Serial.printf_P(PSTR("Monitoring 3 cell"));
if(g.battery_monitoring == 2) Serial.printf_P(PSTR("Monitoring 4 cell"));
if(g.battery_monitoring == 3) Serial.printf_P(PSTR("Monitoring batt volts")); if(g.battery_monitoring == 3) Serial.printf_P(PSTR("Monitoring batt volts"));
if(g.battery_monitoring == 4) Serial.printf_P(PSTR("Monitoring volts and current")); if(g.battery_monitoring == 4) Serial.printf_P(PSTR("Monitoring volts and current"));
print_blanks(2); print_blanks(2);

View File

@ -14,7 +14,6 @@ static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
#endif #endif
static int8_t test_imu(uint8_t argc, const Menu::arg *argv); static int8_t test_imu(uint8_t argc, const Menu::arg *argv);
static int8_t test_battery(uint8_t argc, const Menu::arg *argv); static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
static int8_t test_current(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv); static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp(uint8_t argc, const Menu::arg *argv); static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv); static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv);
@ -34,18 +33,18 @@ static int8_t test_logging(uint8_t argc, const Menu::arg *argv);
// User enters the string in the console to call the functions on the right. // User enters the string in the console to call the functions on the right.
// See class Menu in AP_Common for implementation details // See class Menu in AP_Common for implementation details
static const struct Menu::command test_menu_commands[] PROGMEM = { static const struct Menu::command test_menu_commands[] PROGMEM = {
{"pwm", test_radio_pwm}, {"pwm", test_radio_pwm},
{"radio", test_radio}, {"radio", test_radio},
{"passthru", test_passthru}, {"passthru", test_passthru},
{"failsafe", test_failsafe}, {"failsafe", test_failsafe},
{"battery", test_battery}, {"battery", test_battery},
{"relay", test_relay}, {"relay", test_relay},
{"waypoints", test_wp}, {"waypoints", test_wp},
{"xbee", test_xbee}, {"xbee", test_xbee},
{"eedump", test_eedump}, {"eedump", test_eedump},
{"modeswitch", test_modeswitch}, {"modeswitch", test_modeswitch},
#if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2 #if CONFIG_APM_HARDWARE != APM_HARDWARE_APM2
{"dipswitches", test_dipswitches}, {"dipswitches", test_dipswitches},
#endif #endif
// Tests below here are for hardware sensors only present // Tests below here are for hardware sensors only present
@ -60,7 +59,6 @@ static const struct Menu::command test_menu_commands[] PROGMEM = {
{"airspeed", test_airspeed}, {"airspeed", test_airspeed},
{"airpressure", test_pressure}, {"airpressure", test_pressure},
{"compass", test_mag}, {"compass", test_mag},
{"current", test_current},
#elif HIL_MODE == HIL_MODE_SENSORS #elif HIL_MODE == HIL_MODE_SENSORS
{"adc", test_adc}, {"adc", test_adc},
{"gps", test_gps}, {"gps", test_gps},
@ -260,26 +258,7 @@ test_failsafe(uint8_t argc, const Menu::arg *argv)
static int8_t static int8_t
test_battery(uint8_t argc, const Menu::arg *argv) test_battery(uint8_t argc, const Menu::arg *argv)
{ {
if (g.battery_monitoring >=1 && g.battery_monitoring < 4) { if (g.battery_monitoring == 3 || g.battery_monitoring == 4) {
for (int i = 0; i < 80; i++){ // Need to get many samples for filter to stabilize
delay(20);
read_battery();
}
Serial.printf_P(PSTR("Volts: 1:%2.2f, 2:%2.2f, 3:%2.2f, 4:%2.2f\n"),
battery_voltage1,
battery_voltage2,
battery_voltage3,
battery_voltage4);
} else {
Serial.printf_P(PSTR("Not enabled\n"));
}
return (0);
}
static int8_t
test_current(uint8_t argc, const Menu::arg *argv)
{
if (g.battery_monitoring == 4) {
print_hit_enter(); print_hit_enter();
delta_ms_medium_loop = 100; delta_ms_medium_loop = 100;
@ -287,10 +266,17 @@ if (g.battery_monitoring == 4) {
delay(100); delay(100);
read_radio(); read_radio();
read_battery(); read_battery();
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"), if (g.battery_monitoring == 3){
battery_voltage, Serial.printf_P(PSTR("V: %4.4f\n"),
current_amps, battery_voltage1,
current_total); current_amps1,
current_total1);
} else {
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"),
battery_voltage1,
current_amps1,
current_total1);
}
// write out the servo PWM values // write out the servo PWM values
// ------------------------------ // ------------------------------

Some files were not shown because too many files have changed in this diff Show More