AP_RCProtocol: allow handshake to initiate RC connection. Support listen-only SRXL2 devices.

only bootstrap when SRXL2 is the only configured protocol (RC_PROTOCOLS=256)
remove spurious 0 initializers
This commit is contained in:
Andy Piper 2020-05-09 09:20:33 +01:00 committed by Andrew Tridgell
parent aae2d0082d
commit e6d0e38129
6 changed files with 106 additions and 13 deletions

View File

@ -23,7 +23,7 @@
#include "AP_RCProtocol_SBUS.h" #include "AP_RCProtocol_SBUS.h"
#include "AP_RCProtocol_SUMD.h" #include "AP_RCProtocol_SUMD.h"
#include "AP_RCProtocol_SRXL.h" #include "AP_RCProtocol_SRXL.h"
#if !APM_BUILD_TYPE(APM_BUILD_iofirmware) #ifndef IOMCU_FW
#include "AP_RCProtocol_SRXL2.h" #include "AP_RCProtocol_SRXL2.h"
#endif #endif
#include "AP_RCProtocol_CRSF.h" #include "AP_RCProtocol_CRSF.h"
@ -44,7 +44,7 @@ void AP_RCProtocol::init()
backend[AP_RCProtocol::DSM] = new AP_RCProtocol_DSM(*this); backend[AP_RCProtocol::DSM] = new AP_RCProtocol_DSM(*this);
backend[AP_RCProtocol::SUMD] = new AP_RCProtocol_SUMD(*this); backend[AP_RCProtocol::SUMD] = new AP_RCProtocol_SUMD(*this);
backend[AP_RCProtocol::SRXL] = new AP_RCProtocol_SRXL(*this); backend[AP_RCProtocol::SRXL] = new AP_RCProtocol_SRXL(*this);
#if !APM_BUILD_TYPE(APM_BUILD_iofirmware) #ifndef IOMCU_FW
backend[AP_RCProtocol::SRXL2] = new AP_RCProtocol_SRXL2(*this); backend[AP_RCProtocol::SRXL2] = new AP_RCProtocol_SRXL2(*this);
backend[AP_RCProtocol::CRSF] = new AP_RCProtocol_CRSF(*this); backend[AP_RCProtocol::CRSF] = new AP_RCProtocol_CRSF(*this);
#endif #endif
@ -165,6 +165,7 @@ bool AP_RCProtocol::process_byte(uint8_t byte, uint32_t baudrate)
// we're using pulse inputs, discard bytes // we're using pulse inputs, discard bytes
return false; return false;
} }
// first try current protocol // first try current protocol
if (_detected_protocol != AP_RCProtocol::NONE && !searching) { if (_detected_protocol != AP_RCProtocol::NONE && !searching) {
backend[_detected_protocol]->process_byte(byte, baudrate); backend[_detected_protocol]->process_byte(byte, baudrate);
@ -207,6 +208,22 @@ bool AP_RCProtocol::process_byte(uint8_t byte, uint32_t baudrate)
return false; return false;
} }
// handshake if nothing else has succeeded so far
void AP_RCProtocol::process_handshake( uint32_t baudrate)
{
// if we ever succeeded before then do not handshake
if (_detected_protocol != AP_RCProtocol::NONE || _last_input_ms > 0) {
return;
}
// otherwise handshake all protocols
for (uint8_t i = 0; i < AP_RCProtocol::NONE; i++) {
if (backend[i] != nullptr) {
backend[i]->process_handshake(baudrate);
}
}
}
/* /*
check for bytes from an additional uart. This is used to support RC check for bytes from an additional uart. This is used to support RC
protocols from SERIALn_PROTOCOL protocols from SERIALn_PROTOCOL
@ -257,6 +274,9 @@ void AP_RCProtocol::check_added_uart(void)
added.uart->begin(added.baudrate, 128, 128); added.uart->begin(added.baudrate, 128, 128);
added.last_baud_change_ms = AP_HAL::millis(); added.last_baud_change_ms = AP_HAL::millis();
} }
process_handshake(added.baudrate);
uint32_t n = added.uart->available(); uint32_t n = added.uart->available();
n = MIN(n, 255U); n = MIN(n, 255U);
for (uint8_t i=0; i<n; i++) { for (uint8_t i=0; i<n; i++) {

View File

@ -52,6 +52,7 @@ public:
void process_pulse(uint32_t width_s0, uint32_t width_s1); void process_pulse(uint32_t width_s0, uint32_t width_s1);
void process_pulse_list(const uint32_t *widths, uint16_t n, bool need_swap); void process_pulse_list(const uint32_t *widths, uint16_t n, bool need_swap);
bool process_byte(uint8_t byte, uint32_t baudrate); bool process_byte(uint8_t byte, uint32_t baudrate);
void process_handshake(uint32_t baudrate);
void update(void); void update(void);
void disable_for_pulses(enum rcprotocol_t protocol) { void disable_for_pulses(enum rcprotocol_t protocol) {

View File

@ -28,6 +28,7 @@ public:
virtual ~AP_RCProtocol_Backend() {} virtual ~AP_RCProtocol_Backend() {}
virtual void process_pulse(uint32_t width_s0, uint32_t width_s1) {} virtual void process_pulse(uint32_t width_s0, uint32_t width_s1) {}
virtual void process_byte(uint8_t byte, uint32_t baudrate) {} virtual void process_byte(uint8_t byte, uint32_t baudrate) {}
virtual void process_handshake(uint32_t baudrate) {}
uint16_t read(uint8_t chan); uint16_t read(uint8_t chan);
void read(uint16_t *pwm, uint8_t n); void read(uint16_t *pwm, uint8_t n);
bool new_input(); bool new_input();
@ -58,6 +59,10 @@ public:
return rc_input_count; return rc_input_count;
} }
uint32_t get_rc_protocols_mask(void) const {
return frontend.rc_protocols_mask;
}
// get RSSI // get RSSI
int16_t get_RSSI(void) const { int16_t get_RSSI(void) const {
return rssi; return rssi;

View File

@ -39,10 +39,9 @@ AP_RCProtocol_SRXL2* AP_RCProtocol_SRXL2::_singleton;
AP_RCProtocol_SRXL2::AP_RCProtocol_SRXL2(AP_RCProtocol &_frontend) : AP_RCProtocol_Backend(_frontend) AP_RCProtocol_SRXL2::AP_RCProtocol_SRXL2(AP_RCProtocol &_frontend) : AP_RCProtocol_Backend(_frontend)
{ {
const uint32_t uniqueID = AP_HAL::micros();
#if !APM_BUILD_TYPE(APM_BUILD_UNKNOWN) #if !APM_BUILD_TYPE(APM_BUILD_UNKNOWN)
if (_singleton != nullptr) { if (_singleton != nullptr) {
AP_HAL::panic("Duplicate SRXL2 handler"); AP_HAL::panic("Duplicate SRXL2 handler\n");
} }
_singleton = this; _singleton = this;
@ -51,16 +50,27 @@ AP_RCProtocol_SRXL2::AP_RCProtocol_SRXL2(AP_RCProtocol &_frontend) : AP_RCProtoc
_singleton = this; _singleton = this;
} }
#endif #endif
}
void AP_RCProtocol_SRXL2::_bootstrap(uint8_t device_id)
{
if (_device_id == device_id) {
return;
}
// Init the local SRXL device // Init the local SRXL device
if (!srxlInitDevice(SRXL_DEVICE_ID, SRXL_DEVICE_PRIORITY, SRXL_DEVICE_INFO, uniqueID)) { if (!srxlInitDevice(device_id, SRXL_DEVICE_PRIORITY, SRXL_DEVICE_INFO, device_id)) {
AP_HAL::panic("Failed to initialize SRXL2 device"); AP_HAL::panic("Failed to initialize SRXL2 device\n");
} }
// Init the SRXL bus: The bus index must always be < SRXL_NUM_OF_BUSES -- in this case, it can only be 0 // Init the SRXL bus: The bus index must always be < SRXL_NUM_OF_BUSES -- in this case, it can only be 0
if (!srxlInitBus(0, 0, SRXL_SUPPORTED_BAUD_RATES)) { if (!srxlInitBus(0, 0, SRXL_SUPPORTED_BAUD_RATES)) {
AP_HAL::panic("Failed to initialize SRXL2 bus"); AP_HAL::panic("Failed to initialize SRXL2 bus\n");
} }
_device_id = device_id;
debug("Bootstrapped as 0x%x", _device_id);
} }
AP_RCProtocol_SRXL2::~AP_RCProtocol_SRXL2() { AP_RCProtocol_SRXL2::~AP_RCProtocol_SRXL2() {
@ -121,7 +131,19 @@ void AP_RCProtocol_SRXL2::_process_byte(uint32_t timestamp_us, uint8_t byte)
if (_buflen == _frame_len_full) { if (_buflen == _frame_len_full) {
log_data(AP_RCProtocol::SRXL2, timestamp_us, _buffer, _buflen); log_data(AP_RCProtocol::SRXL2, timestamp_us, _buffer, _buflen);
// we got a full frame but never handshaked before
if (!is_bootstrapped()) {
if (_buffer[1] == 0x21) {
_bootstrap(SRXL_DEVICE_ID);
_last_handshake_ms = timestamp_us / 1000;
} else {
// not a handshake frame so reset without initializing the SRXL2 engine
_decode_state = STATE_IDLE;
_buflen = 0;
_frame_len_full = 0;
return;
}
}
// Try to parse SRXL packet -- this internally calls srxlRun() after packet is parsed and resets timeout // Try to parse SRXL packet -- this internally calls srxlRun() after packet is parsed and resets timeout
if (srxlParsePacket(0, _buffer, _frame_len_full)) { if (srxlParsePacket(0, _buffer, _frame_len_full)) {
add_input(MAX_CHANNELS, _channels, _in_failsafe, _new_rssi); add_input(MAX_CHANNELS, _channels, _in_failsafe, _new_rssi);
@ -228,9 +250,45 @@ void AP_RCProtocol_SRXL2::process_byte(uint8_t byte, uint32_t baudrate)
if (baudrate != 115200) { if (baudrate != 115200) {
return; return;
} }
_process_byte(AP_HAL::micros(), byte); _process_byte(AP_HAL::micros(), byte);
} }
// handshake
void AP_RCProtocol_SRXL2::process_handshake(uint32_t baudrate)
{
// only bootstrap if only SRXL2 is enabled
if (baudrate != 115200 || (get_rc_protocols_mask() & ~(1U<<(uint8_t(AP_RCProtocol::SRXL2)+1)))) {
_handshake_start_ms = 0;
return;
}
uint32_t now = AP_HAL::millis();
// record the time of the first request in this cycle
if (_handshake_start_ms == 0) {
_handshake_start_ms = now;
// it seems the handshake protocol only sets the baudrate after receiving data
// since we are sending data unprompted make sure that the uart is set up correctly
_change_baud_rate(baudrate);
}
// we have not bootstrapped and attempts to listen first have failed
// we should receive a handshake request within the first 250ms
if (!is_bootstrapped() && now - _handshake_start_ms > 250) {
_bootstrap(SRXL_DEVICE_ID_BASE_RX);
}
// certain RXs (e.g. AR620) are "listen-only" - they require the flight controller to initiate
// a handshake in order to switch to SRXL2 mode. This requires that we send data on the UART even
// if we have not decoded SRXL2 (recently). We try this every 50ms.
if (now - _handshake_start_ms > 250 && (_last_handshake_ms == 0 || (now - _last_run_ms > 50 && now - _last_handshake_ms > 50))) {
_in_bootstrap_or_failsafe = true;
srxlRun(0, 50); // 50 is a magic number at which the handshake protocol is initiated
_in_bootstrap_or_failsafe = false;
_last_handshake_ms = now;
}
}
// send data to the uart // send data to the uart
void AP_RCProtocol_SRXL2::send_on_uart(uint8_t* pBuffer, uint8_t length) void AP_RCProtocol_SRXL2::send_on_uart(uint8_t* pBuffer, uint8_t length)
{ {
@ -307,7 +365,7 @@ void AP_RCProtocol_SRXL2::_send_on_uart(uint8_t* pBuffer, uint8_t length)
uint64_t tend = uart->receive_time_constraint_us(1); uint64_t tend = uart->receive_time_constraint_us(1);
uint64_t now = AP_HAL::micros64(); uint64_t now = AP_HAL::micros64();
uint64_t tdelay = now - tend; uint64_t tdelay = now - tend;
if (tdelay > 2000) { if (tdelay > 2000 && !_in_bootstrap_or_failsafe) {
// we've been too slow in responding // we've been too slow in responding
return; return;
} }
@ -338,6 +396,7 @@ void AP_RCProtocol_SRXL2::_change_baud_rate(uint32_t baudrate)
uart->begin(baudrate); uart->begin(baudrate);
uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE); uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
uart->set_unbuffered_writes(true); uart->set_unbuffered_writes(true);
uart->set_blocking_writes(false);
} }
} }

View File

@ -29,6 +29,7 @@ public:
AP_RCProtocol_SRXL2(AP_RCProtocol &_frontend); AP_RCProtocol_SRXL2(AP_RCProtocol &_frontend);
virtual ~AP_RCProtocol_SRXL2(); virtual ~AP_RCProtocol_SRXL2();
void process_byte(uint8_t byte, uint32_t baudrate) override; void process_byte(uint8_t byte, uint32_t baudrate) override;
void process_handshake(uint32_t baudrate) override;
void start_bind(void) override; void start_bind(void) override;
void update(void) override; void update(void) override;
// get singleton instance // get singleton instance
@ -53,20 +54,26 @@ private:
void _send_on_uart(uint8_t* pBuffer, uint8_t length); void _send_on_uart(uint8_t* pBuffer, uint8_t length);
void _change_baud_rate(uint32_t baudrate); void _change_baud_rate(uint32_t baudrate);
void _capture_scaled_input(const uint8_t *values_p, bool in_failsafe, int16_t rssi); void _capture_scaled_input(const uint8_t *values_p, bool in_failsafe, int16_t rssi);
void _bootstrap(uint8_t device_id);
bool is_bootstrapped() const { return _device_id != 0; }
uint8_t _buffer[SRXL2_FRAMELEN_MAX]; /* buffer for raw srxl frame data in correct order --> buffer[0]=byte0 buffer[1]=byte1 */ uint8_t _buffer[SRXL2_FRAMELEN_MAX]; /* buffer for raw srxl frame data in correct order --> buffer[0]=byte0 buffer[1]=byte1 */
uint8_t _buflen; /* length in number of bytes of received srxl dataframe in buffer */ uint8_t _buflen; /* length in number of bytes of received srxl dataframe in buffer */
uint32_t _last_run_ms; // last time the state machine was run uint32_t _last_run_ms; // last time the state machine was run
uint16_t _channels[SRXL2_MAX_CHANNELS] = {0}; /* buffer for extracted RC channel data as pulsewidth in microseconds */ uint16_t _channels[SRXL2_MAX_CHANNELS]; /* buffer for extracted RC channel data as pulsewidth in microseconds */
bool _in_bootstrap_or_failsafe; // controls whether we allow UART sends outside a receive time constraint
uint8_t _device_id;
enum { enum {
STATE_IDLE, /* do nothing */ STATE_IDLE, /* do nothing */
STATE_NEW, /* get header of frame + prepare for frame reception */ STATE_NEW, /* get header of frame + prepare for frame reception */
STATE_COLLECT /* collect RC channel data from frame */ STATE_COLLECT /* collect RC channel data from frame */
}; };
uint8_t _frame_len_full = 0U; /* Length in number of bytes of full srxl datastream */ uint8_t _frame_len_full; /* Length in number of bytes of full srxl datastream */
uint8_t _decode_state = STATE_IDLE; /* Current state of SRXL frame decoding */ uint8_t _decode_state; /* Current state of SRXL frame decoding */
uint8_t _decode_state_next = STATE_IDLE; /* State of frame decoding that will be applied when the next byte from dataframe drops in */ uint8_t _decode_state_next; /* State of frame decoding that will be applied when the next byte from dataframe drops in */
bool _in_failsafe = false; bool _in_failsafe = false;
int16_t _new_rssi = -1; int16_t _new_rssi = -1;
uint32_t _last_handshake_ms;
uint32_t _handshake_start_ms;
}; };

View File

@ -50,6 +50,7 @@ extern "C++" {
// VTX = 0x81 // VTX = 0x81
// NOTE: This value is not used internally -- it is passed as a parameter to srxlInit() in the example app // NOTE: This value is not used internally -- it is passed as a parameter to srxlInit() in the example app
#define SRXL_DEVICE_ID 0x31 #define SRXL_DEVICE_ID 0x31
#define SRXL_DEVICE_ID_BASE_RX 0x30
// Set this to the desired priority level for sending telemetry, ranging from 0 to 100. // Set this to the desired priority level for sending telemetry, ranging from 0 to 100.
// Generally, this number should be 10 times the number of different telemetry packets to regularly send. // Generally, this number should be 10 times the number of different telemetry packets to regularly send.