diff --git a/ArduCopter/navigation.pde b/ArduCopter/navigation.pde index 9ded7b8545..ace2fdeade 100644 --- a/ArduCopter/navigation.pde +++ b/ArduCopter/navigation.pde @@ -41,26 +41,26 @@ static void calc_XY_velocity(){ static int32_t last_longitude = 0; static int32_t last_latutude = 0; + // y_GPS_speed positve = Up + // x_GPS_speed positve = Right + if(g_gps->ground_speed > 150){ // Derive X/Y speed from GPS // this is far more accurate when traveling about 1.5m/s float temp = g_gps->ground_course * RADX100; x_GPS_speed = sin(temp) * (float)g_gps->ground_speed; y_GPS_speed = cos(temp) * (float)g_gps->ground_speed; + }else{ // this speed is ~ in cm because we are using 10^7 numbers from GPS - int16_t x_diff = (last_longitude - g_gps->longitude); - int16_t y_diff = (last_latutude - g_gps->latitude); + float tmp = 1.0/dTnav; + //int8_t tmp = 5; + int16_t x_diff = (g_gps->longitude - last_longitude) * tmp; + int16_t y_diff = (g_gps->latitude - last_latutude) * tmp; - if(x_diff == 0) - x_GPS_speed = x_GPS_speed /2; - else - x_GPS_speed = x_diff; - - if(y_diff == 0) - y_GPS_speed = y_GPS_speed /2; - else - y_GPS_speed = y_diff; + // filter + x_GPS_speed = (x_GPS_speed * 3 + x_diff) / 4; + y_GPS_speed = (y_GPS_speed * 3 + y_diff) / 4; } last_longitude = g_gps->longitude; @@ -69,7 +69,6 @@ static void calc_XY_velocity(){ //Serial.printf("GS: %d \tx:%d \ty:%d\n", g_gps->ground_speed, x_GPS_speed, y_GPS_speed); } -// long_error, lat_error static void calc_location_error(struct Location *next_loc) { /* @@ -82,11 +81,11 @@ static void calc_location_error(struct Location *next_loc) pitch_max = 22° (2200) */ - // X ROLL - long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST + // X Error + long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 Go East - // Y PITCH - lat_error = next_loc->lat - current_loc.lat; // 0 - 500 = -500 pitch NORTH + // Y Error + lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North } #define NAV_ERR_MAX 800 @@ -112,53 +111,55 @@ static void calc_loiter(int x_error, int y_error) nav_lon = constrain(nav_lon, -3500, 3500); nav_lon += x_iterm; - /*Serial.printf("WP_dist: %d, loiter x_actual_speed %d,\tx_rate_error: %d,\tnav_lon: %d,\ty_actual_speed %d,\ty_rate_error: %d,\tnav_lat: %d,\n", - wp_distance, - x_actual_speed, - x_rate_error, - nav_lon, - y_actual_speed, - y_rate_error, - nav_lat); + /* + int8_t ttt = 1.0/dTnav; + int16_t t2 = g.pi_nav_lat.get_integrator(); + // 1 2 3 4 5 6 7 8 9 10 11 + Serial.printf("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d\n", + wp_distance, //1 + ttt, //2 + y_error, //3 + y_GPS_speed, //4 + y_GPS_speed2, //5 + y_actual_speed, //6 + y_target_speed, //7 + y_rate_error, //8 + nav_lat, //9 + y_iterm, //10 + t2); //11 + //*/ + + /* + int16_t t1 = g.pi_nav_lon.get_integrator(); // X + Serial.printf("%d, %1.4f, %d, %d, %d, %d, %d, %d, %d, %d\n", + wp_distance, //1 + dTnav, //2 + x_error, //3 + x_GPS_speed, //4 + x_actual_speed, //5 + x_target_speed, //6 + x_rate_error, //7 + nav_lat, //8 + x_iterm, //9 + t1); //10 //*/ } +//wp_distance, y_error, y_GPS_speed, y_GPS_speed2, y_actual_speed, y_target_speed, y_rate_error, nav_lat, y_iterm, t2 + + #define ERR_GAIN .01 // called at 50hz static void estimate_velocity() { - // for now we assume copter is pointing due north - // use roll to calculate the x velocity - //float scale = sin((float)nav_lon * RADX100)); // guess our X location based tilt of copter - // we need to extimate velocity when below GPS threshold of 1.5m/s if(g_gps->ground_speed < 150){ - // calc the cos of the error to tell how fast we are moving towards the target in cm - //if(g.optflow_enabled && current_loc.alt < 500){ - // optflow wont be enabled on 1280's - // #ifdef OPTFLOW_ENABLED - //x_actual_speed = optflow.vlon * 10; - //y_actual_speed = optflow.vlat * 10; - // #endif - //}else{ + // some smoothing to prevent bumpy rides + x_actual_speed = (x_actual_speed * 15 + x_GPS_speed) / 16; + y_actual_speed = (y_actual_speed * 15 + y_GPS_speed) / 16; - // this area will have future IMU based velocity navigation, - // ignore these sketches. - - // need to take into account the wind based on loiter's iterms - // x_actual_speed += thrust * sin_roll_y; // thrust is a guess, needs to be calibrated whith CH6 - // x_actual_speed -= ERR_GAIN * (float)(x_actual_speed - x_GPS_speed); // error correction - - // y_actual_speed += thrust * sin_pitch_y; // thrust is a guess, needs to be calibrated whith CH6 - // y_actual_speed -= ERR_GAIN * (float)(y_actual_speed - y_GPS_speed); // error correction - //} - - // for now - - // light filter of output - x_actual_speed = (x_actual_speed * 3 + x_GPS_speed) / 4; - y_actual_speed = (y_actual_speed * 3 + y_GPS_speed) / 4; }else{ + // less smoothing needed since the GPS already filters x_actual_speed = (x_actual_speed * 3 + x_GPS_speed) / 4; y_actual_speed = (y_actual_speed * 3 + y_GPS_speed) / 4; } @@ -299,25 +300,6 @@ static int32_t get_altitude_error() return next_WP.alt - current_loc.alt; } -/* -//static int get_loiter_angle() -{ - float power; - int angle; - - if(wp_distance <= g.loiter_radius){ - power = float(wp_distance) / float(g.loiter_radius); - power = constrain(power, 0.5, 1); - angle = 90.0 * (2.0 + power); - }else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){ - power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE); - power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1); - angle = power * 90; - } - - return angle; -}*/ - static int32_t wrap_360(int32_t error) { if (error > 36000) error -= 36000; @@ -332,38 +314,6 @@ static int32_t wrap_180(int32_t error) return error; } -/* -//static int32_t get_crosstrack_correction(void) -{ - // Crosstrack Error - // ---------------- - if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following - - // Meters we are off track line - float error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance; - - // take meters * 100 to get adjustment to nav_bearing - int32_t _crosstrack_correction = g.pi_crosstrack.get_pi(error, dTnav) * 100; - - // constrain answer to 30° to avoid overshoot - return constrain(_crosstrack_correction, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get()); - } - return 0; -} -*/ -/* -//static int32_t cross_track_test() -{ - int32_t temp = wrap_180(target_bearing - crosstrack_bearing); - return abs(temp); -} -*/ -/* -//static void reset_crosstrack() -{ - crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following -} -*/ /* //static int32_t get_altitude_above_home(void) { @@ -386,7 +336,7 @@ static int32_t get_distance(struct Location *loc1, struct Location *loc2) return sqrt(sq(dlat) + sq(dlong)) * .01113195; } /* -static int32_t get_alt_distance(struct Location *loc1, struct Location *loc2) +//static int32_t get_alt_distance(struct Location *loc1, struct Location *loc2) { return abs(loc1->alt - loc2->alt); }