motors_quad: translate from CH_ to MOT_ notation.

This commit is contained in:
Pat Hickey 2012-01-01 15:10:20 -05:00
parent 0b40f55334
commit e0e430895e

View File

@ -5,7 +5,7 @@
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels( _BV(CH_1) | _BV(CH_2) | _BV(CH_3) | _BV(CH_4) );
APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4) );
#endif
}
@ -33,12 +33,12 @@ static void output_motors_armed()
pitch_out = g.rc_2.pwm_out * .707;
// left
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT
motor_out[CH_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK
motor_out[MOT_3] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT
motor_out[MOT_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK
// right
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT
motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; // BACK
motor_out[MOT_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT
motor_out[MOT_4] = g.rc_3.radio_out - roll_out - pitch_out; // BACK
}else{
@ -46,20 +46,20 @@ static void output_motors_armed()
pitch_out = g.rc_2.pwm_out;
// right motor
motor_out[CH_1] = g.rc_3.radio_out - roll_out;
motor_out[MOT_1] = g.rc_3.radio_out - roll_out;
// left motor
motor_out[CH_2] = g.rc_3.radio_out + roll_out;
motor_out[MOT_2] = g.rc_3.radio_out + roll_out;
// front motor
motor_out[CH_3] = g.rc_3.radio_out + pitch_out;
motor_out[MOT_3] = g.rc_3.radio_out + pitch_out;
// back motor
motor_out[CH_4] = g.rc_3.radio_out - pitch_out;
motor_out[MOT_4] = g.rc_3.radio_out - pitch_out;
}
// Yaw input
motor_out[CH_1] += g.rc_4.pwm_out; // CCW
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_4] -= g.rc_4.pwm_out; // CW
motor_out[MOT_1] += g.rc_4.pwm_out; // CCW
motor_out[MOT_2] += g.rc_4.pwm_out; // CCW
motor_out[MOT_3] -= g.rc_4.pwm_out; // CW
motor_out[MOT_4] -= g.rc_4.pwm_out; // CW
/* We need to clip motor output at out_max. When cipping a motors
* output we also need to compensate for the instability by
@ -67,7 +67,7 @@ static void output_motors_armed()
* ensures that we retain control when one or more of the motors
* is at its maximum output
*/
for (int i=CH_1; i<=CH_4; i++) {
for (int i=MOT_1; i<=MOT_4; i++) {
if (motor_out[i] > out_max) {
// note that i^1 is the opposite motor
motor_out[i^1] -= motor_out[i] - out_max;
@ -76,24 +76,24 @@ static void output_motors_armed()
}
// limit output so motors don't stop
motor_out[CH_1] = max(motor_out[CH_1], out_min);
motor_out[CH_2] = max(motor_out[CH_2], out_min);
motor_out[CH_3] = max(motor_out[CH_3], out_min);
motor_out[CH_4] = max(motor_out[CH_4], out_min);
motor_out[MOT_1] = max(motor_out[MOT_1], out_min);
motor_out[MOT_2] = max(motor_out[MOT_2], out_min);
motor_out[MOT_3] = max(motor_out[MOT_3], out_min);
motor_out[MOT_4] = max(motor_out[MOT_4], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_3] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
}
#endif
// this filter slows the acceleration of motors vs the deceleration
// Idea by Denny Rowland to help with his Yaw issue
for(int8_t i=CH_1; i <= CH_4; i++ ) {
for(int8_t i=MOT_1; i <= MOT_4; i++ ) {
if(motor_filtered[i] < motor_out[i]){
motor_filtered[i] = (motor_out[i] + motor_filtered[i]) / 2;
}else{
@ -102,10 +102,10 @@ static void output_motors_armed()
}
}
APM_RC.OutputCh(CH_1, motor_filtered[CH_1]);
APM_RC.OutputCh(CH_2, motor_filtered[CH_2]);
APM_RC.OutputCh(CH_3, motor_filtered[CH_3]);
APM_RC.OutputCh(CH_4, motor_filtered[CH_4]);
APM_RC.OutputCh(MOT_1, motor_filtered[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_filtered[MOT_2]);
APM_RC.OutputCh(MOT_3, motor_filtered[MOT_3]);
APM_RC.OutputCh(MOT_4, motor_filtered[MOT_4]);
#if INSTANT_PWM == 1
// InstantPWM
@ -130,52 +130,52 @@ static void output_motors_disarmed()
}
// Send commands to motors
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_1, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_2, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_3, g.rc_3.radio_min);
APM_RC.OutputCh(MOT_4, g.rc_3.radio_min);
}
/*
//static void debug_motors()
{
Serial.printf("1:%d\t2:%d\t3:%d\t4:%d\n",
motor_out[CH_1],
motor_out[CH_2],
motor_out[CH_3],
motor_out[CH_4]);
motor_out[MOT_1],
motor_out[MOT_2],
motor_out[MOT_3],
motor_out[MOT_4]);
}
//*/
static void output_motor_test()
{
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_3] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
motor_out[MOT_1] = g.rc_3.radio_min;
motor_out[MOT_2] = g.rc_3.radio_min;
motor_out[MOT_3] = g.rc_3.radio_min;
motor_out[MOT_4] = g.rc_3.radio_min;
if(g.frame_orientation == X_FRAME){
// 31
// 24
if(g.rc_1.control_in > 3000){
motor_out[CH_1] += 100;
motor_out[CH_4] += 100;
motor_out[MOT_1] += 100;
motor_out[MOT_4] += 100;
}
if(g.rc_1.control_in < -3000){
motor_out[CH_2] += 100;
motor_out[CH_3] += 100;
motor_out[MOT_2] += 100;
motor_out[MOT_3] += 100;
}
if(g.rc_2.control_in > 3000){
motor_out[CH_2] += 100;
motor_out[CH_4] += 100;
motor_out[MOT_2] += 100;
motor_out[MOT_4] += 100;
}
if(g.rc_2.control_in < -3000){
motor_out[CH_1] += 100;
motor_out[CH_3] += 100;
motor_out[MOT_1] += 100;
motor_out[MOT_3] += 100;
}
}else{
@ -183,22 +183,22 @@ static void output_motor_test()
// 2 1
// 4
if(g.rc_1.control_in > 3000)
motor_out[CH_1] += 100;
motor_out[MOT_1] += 100;
if(g.rc_1.control_in < -3000)
motor_out[CH_2] += 100;
motor_out[MOT_2] += 100;
if(g.rc_2.control_in > 3000)
motor_out[CH_4] += 100;
motor_out[MOT_4] += 100;
if(g.rc_2.control_in < -3000)
motor_out[CH_3] += 100;
motor_out[MOT_3] += 100;
}
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_3]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
APM_RC.OutputCh(MOT_1, motor_out[MOT_1]);
APM_RC.OutputCh(MOT_2, motor_out[MOT_2]);
APM_RC.OutputCh(MOT_3, motor_out[MOT_3]);
APM_RC.OutputCh(MOT_4, motor_out[MOT_4]);
}
#endif