AP_Common: add AP_ExpandingGeneric to reduce code size

This commit is contained in:
Randy Mackay 2019-06-19 12:04:40 +09:00
parent 4ef3005d2c
commit df6c666740
2 changed files with 112 additions and 70 deletions

View File

@ -0,0 +1,66 @@
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_ExpandingArray.h"
AP_ExpandingArrayGeneric::~AP_ExpandingArrayGeneric(void)
{
// free chunks
for (uint16_t i=0; i<chunk_count; i++) {
free(chunk_ptrs[i]);
}
// free chunks_ptrs array
free(chunk_ptrs);
}
// expand the array by specified number of chunks, returns true on success
bool AP_ExpandingArrayGeneric::expand(uint16_t num_chunks)
{
// expand chunk_ptrs array if necessary
if (chunk_count + num_chunks >= chunk_count_max) {
uint16_t chunk_ptr_size = chunk_count + num_chunks + chunk_ptr_increment;
chunk_ptr_t *chunk_ptrs_new = (chunk_ptr_t*)realloc(chunk_ptrs, chunk_ptr_size * sizeof(chunk_ptr_t));
if (chunk_ptrs_new == nullptr) {
return false;
}
// use new pointers array
chunk_ptrs = chunk_ptrs_new;
chunk_count_max = chunk_ptr_size;
}
// allocate new chunks
for (uint16_t i = 0; i < num_chunks; i++) {
uint8_t *new_chunk = (uint8_t *)calloc(chunk_size, elem_size);
if (new_chunk == nullptr) {
// failed to allocate new chunk
return false;
}
chunk_ptrs[chunk_count] = new_chunk;
chunk_count++;
}
return true;
}
// expand to hold at least num_items
bool AP_ExpandingArrayGeneric::expand_to_hold(uint16_t num_items)
{
// check if already big enough
if (num_items <= max_items()) {
return true;
}
uint16_t chunks_required = ((num_items - max_items()) / chunk_size) + 1;
return expand(chunks_required);
}

View File

@ -16,6 +16,9 @@
/* /*
* ExpandingArray class description * ExpandingArray class description
* *
* ExpandingArrayGeneric implements most of the required functionality and is type agnostic allowing smaller overall code size
* ExpandingArray<T> is the template and implements the small number of type specific methods
*
* Elements are organised into "chunks" with each chunk holding "chunk_size" elements * Elements are organised into "chunks" with each chunk holding "chunk_size" elements
* The "chunk_ptrs" array holds pointers to all allocated chunks * The "chunk_ptrs" array holds pointers to all allocated chunks
* *
@ -38,96 +41,69 @@
#include <AP_Common/AP_Common.h> #include <AP_Common/AP_Common.h>
class AP_ExpandingArrayGeneric
{
public:
AP_ExpandingArrayGeneric(uint16_t element_size, uint16_t elements_per_chunk) :
elem_size(element_size),
chunk_size(elements_per_chunk)
{}
~AP_ExpandingArrayGeneric(void);
/* Do not allow copies */
AP_ExpandingArrayGeneric(const AP_ExpandingArrayGeneric &other) = delete;
AP_ExpandingArrayGeneric &operator=(const AP_ExpandingArrayGeneric&) = delete;
// current maximum number of items (using expand may increase this)
uint16_t max_items() const { return chunk_size * chunk_count; }
// expand the array by specified number of chunks, returns true on success
bool expand(uint16_t num_chunks = 1);
// expand to hold at least num_items
bool expand_to_hold(uint16_t num_items);
protected:
const uint16_t elem_size; // number of bytes for each element
const uint16_t chunk_size; // the number of T elements in each chunk
const uint16_t chunk_ptr_increment = 32; // chunk_ptrs array is grown by this many elements each time it fills
typedef uint8_t* chunk_ptr_t; // pointer to a chunk
chunk_ptr_t *chunk_ptrs; // array of pointers to allocated chunks
uint16_t chunk_count_max; // number of elements in chunk_ptrs array
uint16_t chunk_count; // number of allocated chunks
};
template <typename T> template <typename T>
class AP_ExpandingArray class AP_ExpandingArray : public AP_ExpandingArrayGeneric
{ {
public: public:
AP_ExpandingArray<T>(uint16_t elements_per_chunk) : AP_ExpandingArray<T>(uint16_t elements_per_chunk) :
chunk_size(elements_per_chunk) AP_ExpandingArrayGeneric(sizeof(T), elements_per_chunk)
{} {}
~AP_ExpandingArray(void)
{
// free chunks
for (uint16_t i=0; i<chunk_count; i++) {
free(chunk_ptrs[i]);
}
// free chunks_ptrs array
free(chunk_ptrs);
}
/* Do not allow copies */ /* Do not allow copies */
AP_ExpandingArray<T>(const AP_ExpandingArray<T> &other) = delete; AP_ExpandingArray<T>(const AP_ExpandingArray<T> &other) = delete;
AP_ExpandingArray<T> &operator=(const AP_ExpandingArray<T>&) = delete; AP_ExpandingArray<T> &operator=(const AP_ExpandingArray<T>&) = delete;
// current maximum number of items (using expand may increase this)
uint16_t max_items() const { return chunk_size * chunk_count; }
// allow use as an array for assigning to elements. no bounds checking is performed // allow use as an array for assigning to elements. no bounds checking is performed
T &operator[](uint16_t i) T &operator[](uint16_t i)
{ {
const uint16_t chunk_num = i / chunk_size; const uint16_t chunk_num = i / chunk_size;
const uint16_t chunk_index = i % chunk_size; const uint16_t chunk_index = (i % chunk_size) * elem_size;
return chunk_ptrs[chunk_num][chunk_index]; return (T &)(chunk_ptrs[chunk_num][chunk_index]);
} }
// allow use as an array for accessing elements. no bounds checking is performed // allow use as an array for accessing elements. no bounds checking is performed
const T &operator[](uint16_t i) const const T &operator[](uint16_t i) const
{ {
const uint16_t chunk_num = i / chunk_size; const uint16_t chunk_num = i / chunk_size;
const uint16_t chunk_index = i % chunk_size; const uint16_t chunk_index = (i % chunk_size) * elem_size;
return chunk_ptrs[chunk_num][chunk_index]; return (const T &)(chunk_ptrs[chunk_num][chunk_index]);
} }
// expand the array by specified number of chunks, returns true on success
bool expand(uint16_t num_chunks = 1)
{
// expand chunk_ptrs array if necessary
if (chunk_count + num_chunks >= chunk_count_max) {
uint16_t chunk_ptr_size = chunk_count + num_chunks + chunk_ptr_increment;
chunk_ptr_t *chunk_ptrs_new = (chunk_ptr_t*)realloc(chunk_ptrs, chunk_ptr_size * sizeof(T*));
if (chunk_ptrs_new == nullptr) {
return false;
}
// use new pointers array
chunk_ptrs = chunk_ptrs_new;
chunk_count_max = chunk_ptr_size;
}
// allocate new chunks
for (uint16_t i = 0; i < num_chunks; i++) {
T *new_chunk = (T *)calloc(chunk_size, sizeof(T));
if (new_chunk == nullptr) {
// failed to allocate new chunk
return false;
}
chunk_ptrs[chunk_count] = new_chunk;
chunk_count++;
}
return true;
}
// expand to hold at least num_items
bool expand_to_hold(uint16_t num_items)
{
// check if already big enough
if (num_items <= max_items()) {
return true;
}
uint16_t chunks_required = ((num_items - max_items()) / chunk_size) + 1;
return expand(chunks_required);
}
private:
const uint16_t chunk_size; // the number of T elements in each chunk
const uint16_t chunk_ptr_increment = 32; // chunk_ptrs array is grown by this many elements each time it fills
typedef T* chunk_ptr_t; // pointer to a chunk
chunk_ptr_t *chunk_ptrs; // array of pointers to allocated chunks
uint16_t chunk_count_max; // number of elements in chunk_ptrs array
uint16_t chunk_count; // number of allocated chunks
}; };