Added ADC gyro Filtering for quads - this fixes a noise issue introduced into the controller

added Position mode
removed
Added back in the accelerometer experiment
Added filter_result boolean to enable filter on the fly
This commit is contained in:
Jason Short 2011-09-29 23:27:23 -07:00
parent 7b08185d83
commit df1a39f650
10 changed files with 340 additions and 313 deletions

View File

@ -37,8 +37,13 @@
CH7_SIMPLE_MODE
CH7_RTL
CH7_AUTO_TRIM
CH7_ADC_FILTER (experimental)
*/
#define ACCEL_ALT_HOLD 0
#define ACCEL_ALT_HOLD_GAIN 12.0
// ACCEL_ALT_HOLD 1 to enable experimental alt_hold_mode
// See the config.h and defines.h files for how to set this up!
//

View File

@ -244,7 +244,8 @@ static const char* flight_mode_strings[] = {
"GUIDED",
"LOITER",
"RTL",
"CIRCLE"};
"CIRCLE",
"POSITION"};
/* Radio values
Channel assignments
@ -259,8 +260,8 @@ static const char* flight_mode_strings[] = {
*/
// test
//Vector3f accels_rot;
//float accel_gain = 20;
Vector3f accels_rot;
//float accel_gain = 12;
// temp
int y_actual_speed;
@ -495,7 +496,6 @@ static unsigned long nav_loopTimer; // used to track the elapsed ime for GPS
static byte counter_one_herz;
static bool GPS_enabled = false;
static byte loop_step;
static bool new_radio_frame;
////////////////////////////////////////////////////////////////////////////////
@ -597,8 +597,6 @@ static void medium_loop()
// This case deals with the GPS and Compass
//-----------------------------------------
case 0:
loop_step = 1;
medium_loopCounter++;
#ifdef OPTFLOW_ENABLED
@ -638,12 +636,10 @@ static void medium_loop()
// This case performs some navigation computations
//------------------------------------------------
case 1:
loop_step = 2;
medium_loopCounter++;
// Auto control modes:
if(g_gps->new_data && g_gps->fix){
loop_step = 11;
// invalidate GPS data
g_gps->new_data = false;
@ -674,7 +670,6 @@ static void medium_loop()
// command processing
//-------------------
case 2:
loop_step = 3;
medium_loopCounter++;
// Read altitude from sensors
@ -690,7 +685,6 @@ static void medium_loop()
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
loop_step = 4;
medium_loopCounter++;
// perform next command
@ -729,7 +723,6 @@ static void medium_loop()
// This case controls the slow loop
//---------------------------------
case 4:
loop_step = 5;
medium_loopCounter = 0;
if (g.battery_monitoring != 0){
@ -823,7 +816,6 @@ static void slow_loop()
//----------------------------------------
switch (slow_loopCounter){
case 0:
loop_step = 6;
slow_loopCounter++;
superslow_loopCounter++;
@ -838,7 +830,6 @@ static void slow_loop()
break;
case 1:
loop_step = 7;
slow_loopCounter++;
// Read 3-position switch on radio
@ -863,7 +854,6 @@ static void slow_loop()
break;
case 2:
loop_step = 8;
slow_loopCounter = 0;
update_events();
@ -902,7 +892,6 @@ static void slow_loop()
// 1Hz loop
static void super_slow_loop()
{
loop_step = 9;
if (g.log_bitmask & MASK_LOG_CUR)
Log_Write_Current();
@ -915,7 +904,6 @@ static void super_slow_loop()
static void update_GPS(void)
{
loop_step = 10;
g_gps->update();
update_GPS_light();
@ -1098,7 +1086,7 @@ void update_throttle_mode(void)
}
// apply throttle control at 200 hz
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + get_angle_boost();
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + get_angle_boost() + alt_hold_velocity();
break;
}
}
@ -1147,6 +1135,7 @@ static void update_navigation()
// switch passthrough to LOITER
case LOITER:
case POSITION:
wp_control = LOITER_MODE;
// calculates the desired Roll and Pitch
@ -1212,8 +1201,8 @@ static void update_trig(void){
// 270 = cos_yaw: -1.00, sin_yaw: 0.00,
//Vector3f accel_filt = imu.get_accel_filtered();
//accels_rot = dcm.get_dcm_matrix() * imu.get_accel_filtered();
Vector3f accel_filt = imu.get_accel_filtered();
accels_rot = dcm.get_dcm_matrix() * imu.get_accel_filtered();
}
// updated at 10hz

View File

@ -189,16 +189,20 @@ get_nav_yaw_offset(int yaw_input, int reset)
}
}
/*
///*
static int alt_hold_velocity()
{
// subtract filtered Accel
float error = abs(next_WP.alt - current_loc.alt);
error = min(error, 200);
error = 1 - (error/ 200.0);
return (accels_rot.z + 9.81) * accel_gain * error;
#if ACCEL_ALT_HOLD == 1
// subtract filtered Accel
float error = abs(next_WP.alt - current_loc.alt);
error = min(error, 200.0);
error = 1 - (error/ 200.0);
return (accels_rot.z + 9.81) * ACCEL_ALT_HOLD_GAIN * error;
#else
return 0;
#endif
}
*/
//*/
static int get_angle_boost()
{

View File

@ -480,7 +480,7 @@
# define NAV_P 2.0 // for 4.5 ms error = 13.5 pitch
#endif
#ifndef NAV_I
# define NAV_I 0.10 // this
# define NAV_I 0.10 // this feels really low, 4s to move 1 degree pitch...
#endif
#ifndef NAV_IMAX
# define NAV_IMAX 16 // degrees

View File

@ -90,6 +90,12 @@ static void read_trim_switch()
trim_flag = false;
}
}
#elif CH7_OPTION == CH7_ADC_FILTER
if (g.rc_7.control_in > 800){
adc.filter_result = true;
}else{
adc.filter_result = false;
}
#elif CH7_OPTION == CH7_AUTO_TRIM
if (g.rc_7.control_in > 800){
auto_level_counter = 10;

View File

@ -33,6 +33,7 @@
#define CH7_SIMPLE_MODE 3
#define CH7_RTL 4
#define CH7_AUTO_TRIM 5
#define CH7_ADC_FILTER 6
// Frame types
#define QUAD_FRAME 0
@ -123,7 +124,8 @@
#define LOITER 5 // Hold a single location
#define RTL 6 // AUTO control
#define CIRCLE 7 // AUTO control
#define NUM_MODES 8
#define POSITION 8 // AUTO control
#define NUM_MODES 9
#define SIMPLE_1 1
#define SIMPLE_2 2

View File

@ -83,11 +83,13 @@ static void calc_loiter(int x_error, int y_error)
y_rate_error = y_target_speed - y_actual_speed; // 413
y_rate_error = constrain(y_rate_error, -250, 250); // added a rate error limit to keep pitching down to a minimum
nav_lat = constrain(g.pi_nav_lat.get_pi(y_rate_error, dTnav), -3500, 3500);
nav_lat = g.pi_nav_lat.get_pi(y_rate_error, dTnav);
nav_lat = constrain(nav_lat, -3500, 3500);
x_rate_error = x_target_speed - x_actual_speed;
x_rate_error = constrain(x_rate_error, -250, 250);
nav_lon = constrain(g.pi_nav_lon.get_pi(x_rate_error, dTnav), -3500, 3500);
nav_lon = g.pi_nav_lon.get_pi(x_rate_error, dTnav);
nav_lon = constrain(nav_lon, -3500, 3500);
}
// nav_roll, nav_pitch
@ -156,29 +158,11 @@ static void calc_nav_pitch_roll()
nav_pitch);*/
}
static long get_altitude_error()
{
return next_WP.alt - current_loc.alt;
}
/*
static void calc_altitude_smoothing_error()
{
// limit climb rates - we draw a straight line between first location and edge of waypoint_radius
target_altitude = next_WP.alt - ((float)(wp_distance * (next_WP.alt - prev_WP.alt)) / (float)(wp_totalDistance - g.waypoint_radius));
// stay within a certain range
if(prev_WP.alt > next_WP.alt){
target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt);
}else{
target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt);
}
altitude_error = target_altitude - current_loc.alt;
}
*/
static int get_loiter_angle()
{
float power;
@ -197,7 +181,6 @@ static int get_loiter_angle()
return angle;
}
static long wrap_360(long error)
{
if (error > 36000) error -= 36000;

View File

@ -414,6 +414,14 @@ static void set_mode(byte mode)
next_WP = current_loc;
break;
case POSITION:
yaw_mode = YAW_HOLD;
roll_pitch_mode = ROLL_PITCH_AUTO;
throttle_mode = THROTTLE_MANUAL;
next_WP = current_loc;
break;
case GUIDED:
yaw_mode = YAW_AUTO;
roll_pitch_mode = ROLL_PITCH_AUTO;

View File

@ -1,232 +1,258 @@
/*
AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega
Code by Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com
Modified by John Ihlein 6 / 19 / 2010 to:
1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably
only an issue on initial read of ADC at program start.
2)Reorder analog read order as follows:
p, q, r, ax, ay, az
This library is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
External ADC ADS7844 is connected via Serial port 2 (in SPI mode)
TXD2 = MOSI = pin PH1
RXD2 = MISO = pin PH0
XCK2 = SCK = pin PH2
Chip Select pin is PC4 (33) [PH6 (9)]
We are using the 16 clocks per conversion timming to increase efficiency (fast)
The sampling frequency is 1kHz (Timer2 overflow interrupt)
So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so
we have an 10x oversampling and averaging.
Methods:
Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt)
Ch(ch_num) : Return the ADC channel value
// HJI - Input definitions. USB connector assumed to be on the left, Rx and servo
// connector pins to the rear. IMU shield components facing up. These are board
// referenced sensor inputs, not device referenced.
On Ardupilot Mega Hardware, oriented as described above:
Chennel 0 : yaw rate, r
Channel 1 : roll rate, p
Channel 2 : pitch rate, q
Channel 3 : x / y gyro temperature
Channel 4 : x acceleration, aX
Channel 5 : y acceleration, aY
Channel 6 : z acceleration, aZ
Channel 7 : Differential pressure sensor port
*/
extern "C" {
// AVR LibC Includes
#include <inttypes.h>
#include <stdint.h>
#include <avr/interrupt.h>
#include "WConstants.h"
}
#include "AP_ADC_ADS7844.h"
// Commands for reading ADC channels on ADS7844
static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 };
// the sum of the values since last read
static volatile uint32_t _sum[8];
// how many values we've accumulated since last read
static volatile uint16_t _count[8];
static uint32_t last_ch6_micros;
// TCNT2 values for various interrupt rates,
// assuming 256 prescaler. Note that these values
// assume a zero-time ISR. The actual rate will be a
// bit lower than this
#define TCNT2_781_HZ (256-80)
#define TCNT2_1008_HZ (256-62)
#define TCNT2_1302_HZ (256-48)
static inline unsigned char ADC_SPI_transfer(unsigned char data)
{
/* Put data into buffer, sends the data */
UDR2 = data;
/* Wait for data to be received */
while ( !(UCSR2A & (1 << RXC2)) );
/* Get and return received data from buffer */
return UDR2;
}
ISR (TIMER2_OVF_vect)
{
uint8_t ch;
static uint8_t timer_offset;
bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4)
ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel
for (ch = 0; ch < 8; ch++) {
uint16_t v;
v = ADC_SPI_transfer(0) << 8; // Read first byte
v |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command
if (v & 0x8007) {
// this is a 12-bit ADC, shifted by 3 bits.
// if we get other bits set then the value is
// bogus and should be ignored
continue;
}
if (++_count[ch] == 0) {
// overflow ... shouldn't happen too often
// unless we're just not using the
// channel. Notice that we overflow the count
// to 1 here, not zero, as otherwise the
// reader below could get a division by zero
_sum[ch] = 0;
_count[ch] = 1;
last_ch6_micros = micros();
}
_sum[ch] += (v >> 3);
}
bit_set(PORTC, 4); // Disable Chip Select (PIN PC4)
// this gives us a sample rate between 781Hz and 1302Hz. We
// randomise it to try to minimise aliasing effects
timer_offset = (timer_offset + 49) % 32;
TCNT2 = TCNT2_781_HZ + timer_offset;
}
// Constructors ////////////////////////////////////////////////////////////////
AP_ADC_ADS7844::AP_ADC_ADS7844()
{
}
// Public Methods //////////////////////////////////////////////////////////////
void AP_ADC_ADS7844::Init(void)
{
pinMode(ADC_CHIP_SELECT, OUTPUT);
digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low)
// Setup Serial Port2 in SPI mode
UBRR2 = 0;
DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode
// Set MSPI mode of operation and SPI data mode 0.
UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2);
// Enable receiver and transmitter.
UCSR2B = (1 << RXEN2) | (1 << TXEN2);
// Set Baud rate
UBRR2 = 2; // SPI clock running at 2.6MHz
// get an initial value for each channel. This ensures
// _count[] is never zero
for (uint8_t i=0; i<8; i++) {
uint16_t adc_tmp;
adc_tmp = ADC_SPI_transfer(0) << 8;
adc_tmp |= ADC_SPI_transfer(adc_cmd[i + 1]);
_count[i] = 1;
_sum[i] = adc_tmp;
}
last_ch6_micros = micros();
// Enable Timer2 Overflow interrupt to capture ADC data
TIMSK2 = 0; // Disable interrupts
TCCR2A = 0; // normal counting mode
TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of clk/256
TCNT2 = 0;
TIFR2 = _BV(TOV2); // clear pending interrupts;
TIMSK2 = _BV(TOIE2); // enable the overflow interrupt
}
// Read one channel value
uint16_t AP_ADC_ADS7844::Ch(uint8_t ch_num)
{
uint16_t count;
uint32_t sum;
// ensure we have at least one value
while (_count[ch_num] == 0) /* noop */ ;
// grab the value with interrupts disabled, and clear the count
cli();
count = _count[ch_num];
sum = _sum[ch_num];
_count[ch_num] = 0;
_sum[ch_num] = 0;
sei();
return sum/count;
}
// Read 6 channel values
// this assumes that the counts for all of the 6 channels are
// equal. This will only be true if we always consistently access a
// sensor by either Ch6() or Ch() and never mix them. If you mix them
// then you will get very strange results
uint32_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, uint16_t *result)
{
uint16_t count[6];
uint32_t sum[6];
uint8_t i;
// ensure we have at least one value
for (i=0; i<6; i++) {
while (_count[channel_numbers[i]] == 0) /* noop */;
}
// grab the values with interrupts disabled, and clear the counts
cli();
for (i=0; i<6; i++) {
count[i] = _count[channel_numbers[i]];
sum[i] = _sum[channel_numbers[i]];
_count[channel_numbers[i]] = 0;
_sum[channel_numbers[i]] = 0;
}
sei();
// calculate averages. We keep this out of the cli region
// to prevent us stalling the ISR while doing the
// division. That costs us 36 bytes of stack, but I think its
// worth it.
for (i=0; i<6; i++) {
result[i] = sum[i] / count[i];
}
// return number of microseconds since last call
uint32_t us = micros();
uint32_t ret = us - last_ch6_micros;
last_ch6_micros = us;
return ret;
}
/*
AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega
Code by Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com
Modified by John Ihlein 6 / 19 / 2010 to:
1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably
only an issue on initial read of ADC at program start.
2)Reorder analog read order as follows:
p, q, r, ax, ay, az
This library is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
External ADC ADS7844 is connected via Serial port 2 (in SPI mode)
TXD2 = MOSI = pin PH1
RXD2 = MISO = pin PH0
XCK2 = SCK = pin PH2
Chip Select pin is PC4 (33) [PH6 (9)]
We are using the 16 clocks per conversion timming to increase efficiency (fast)
The sampling frequency is 1kHz (Timer2 overflow interrupt)
So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so
we have an 10x oversampling and averaging.
Methods:
Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt)
Ch(ch_num) : Return the ADC channel value
// HJI - Input definitions. USB connector assumed to be on the left, Rx and servo
// connector pins to the rear. IMU shield components facing up. These are board
// referenced sensor inputs, not device referenced.
On Ardupilot Mega Hardware, oriented as described above:
Chennel 0 : yaw rate, r
Channel 1 : roll rate, p
Channel 2 : pitch rate, q
Channel 3 : x / y gyro temperature
Channel 4 : x acceleration, aX
Channel 5 : y acceleration, aY
Channel 6 : z acceleration, aZ
Channel 7 : Differential pressure sensor port
*/
extern "C" {
// AVR LibC Includes
#include <inttypes.h>
#include <stdint.h>
#include <avr/interrupt.h>
#include "WConstants.h"
}
#include "AP_ADC_ADS7844.h"
// Commands for reading ADC channels on ADS7844
static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 };
// the sum of the values since last read
static volatile uint32_t _sum[8];
// how many values we've accumulated since last read
static volatile uint16_t _count[8];
static uint32_t last_ch6_micros;
// TCNT2 values for various interrupt rates,
// assuming 256 prescaler. Note that these values
// assume a zero-time ISR. The actual rate will be a
// bit lower than this
#define TCNT2_781_HZ (256-80)
#define TCNT2_1008_HZ (256-62)
#define TCNT2_1302_HZ (256-48)
static inline unsigned char ADC_SPI_transfer(unsigned char data)
{
/* Put data into buffer, sends the data */
UDR2 = data;
/* Wait for data to be received */
while ( !(UCSR2A & (1 << RXC2)) );
/* Get and return received data from buffer */
return UDR2;
}
ISR (TIMER2_OVF_vect)
{
uint8_t ch;
static uint8_t timer_offset;
bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4)
ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel
for (ch = 0; ch < 8; ch++) {
uint16_t v;
v = ADC_SPI_transfer(0) << 8; // Read first byte
v |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command
if (v & 0x8007) {
// this is a 12-bit ADC, shifted by 3 bits.
// if we get other bits set then the value is
// bogus and should be ignored
continue;
}
if (++_count[ch] == 0) {
// overflow ... shouldn't happen too often
// unless we're just not using the
// channel. Notice that we overflow the count
// to 1 here, not zero, as otherwise the
// reader below could get a division by zero
_sum[ch] = 0;
_count[ch] = 1;
last_ch6_micros = micros();
}
_sum[ch] += (v >> 3);
}
bit_set(PORTC, 4); // Disable Chip Select (PIN PC4)
// this gives us a sample rate between 781Hz and 1302Hz. We
// randomise it to try to minimise aliasing effects
timer_offset = (timer_offset + 49) % 32;
TCNT2 = TCNT2_781_HZ + timer_offset;
}
// Constructors ////////////////////////////////////////////////////////////////
AP_ADC_ADS7844::AP_ADC_ADS7844() :
_filter_index(0),
filter_result(false)
{
}
// Public Methods //////////////////////////////////////////////////////////////
void AP_ADC_ADS7844::Init(void)
{
pinMode(ADC_CHIP_SELECT, OUTPUT);
digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low)
// Setup Serial Port2 in SPI mode
UBRR2 = 0;
DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode
// Set MSPI mode of operation and SPI data mode 0.
UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2);
// Enable receiver and transmitter.
UCSR2B = (1 << RXEN2) | (1 << TXEN2);
// Set Baud rate
UBRR2 = 2; // SPI clock running at 2.6MHz
// get an initial value for each channel. This ensures
// _count[] is never zero
for (uint8_t i=0; i<8; i++) {
uint16_t adc_tmp;
adc_tmp = ADC_SPI_transfer(0) << 8;
adc_tmp |= ADC_SPI_transfer(adc_cmd[i + 1]);
_count[i] = 1;
_sum[i] = adc_tmp;
}
last_ch6_micros = micros();
_filter_index = 0;
// Enable Timer2 Overflow interrupt to capture ADC data
TIMSK2 = 0; // Disable interrupts
TCCR2A = 0; // normal counting mode
TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of clk/256
TCNT2 = 0;
TIFR2 = _BV(TOV2); // clear pending interrupts;
TIMSK2 = _BV(TOIE2); // enable the overflow interrupt
}
// Read one channel value
uint16_t AP_ADC_ADS7844::Ch(uint8_t ch_num)
{
uint16_t count;
uint32_t sum;
// ensure we have at least one value
while (_count[ch_num] == 0) /* noop */ ;
// grab the value with interrupts disabled, and clear the count
cli();
count = _count[ch_num];
sum = _sum[ch_num];
_count[ch_num] = 0;
_sum[ch_num] = 0;
sei();
return sum/count;
}
// Read 6 channel values
// this assumes that the counts for all of the 6 channels are
// equal. This will only be true if we always consistently access a
// sensor by either Ch6() or Ch() and never mix them. If you mix them
// then you will get very strange results
uint32_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, uint16_t *result)
{
uint16_t count[6];
uint32_t sum[6];
uint8_t i;
// ensure we have at least one value
for (i=0; i<6; i++) {
while (_count[channel_numbers[i]] == 0) /* noop */;
}
// grab the values with interrupts disabled, and clear the counts
cli();
for (i=0; i<6; i++) {
count[i] = _count[channel_numbers[i]];
sum[i] = _sum[channel_numbers[i]];
_count[channel_numbers[i]] = 0;
_sum[channel_numbers[i]] = 0;
}
sei();
// calculate averages. We keep this out of the cli region
// to prevent us stalling the ISR while doing the
// division. That costs us 36 bytes of stack, but I think its
// worth it.
for (i = 0; i < 6; i++) {
result[i] = sum[i] / count[i];
}
// filter ch 0,1,2 for smoother Gyro output.
if(filter_result){
uint32_t _filter_sum;
for (i = 0; i < 3; i++) {
// move most recent result into filter
_filter[i][_filter_index] = result[i];
_filter_sum = 0;
// sum the filter
for (uint8_t n = 0; n < 8; n++) {
_filter_sum += _filter[i][n];
}
result[i] = _filter_sum / 8;
}
// increment filter index
_filter_index++;
// loop our filter
if(_filter_index == 8)
_filter_index = 0;
}
// return number of microseconds since last call
uint32_t us = micros();
uint32_t ret = us - last_ch6_micros;
last_ch6_micros = us;
return ret;
}

View File

@ -1,32 +1,36 @@
#ifndef AP_ADC_ADS7844_H
#define AP_ADC_ADS7844_H
#define bit_set(p,m) ((p) |= ( 1<<m))
#define bit_clear(p,m) ((p) &= ~(1<<m))
// We use Serial Port 2 in SPI Mode
#define ADC_DATAOUT 51 // MOSI
#define ADC_DATAIN 50 // MISO
#define ADC_SPICLOCK 52 // SCK
#define ADC_CHIP_SELECT 33 // PC4 9 // PH6 Puerto:0x08 Bit mask : 0x40
#define ADC_FILTER_SIZE 3
#include "AP_ADC.h"
#include <inttypes.h>
class AP_ADC_ADS7844 : public AP_ADC
{
public:
AP_ADC_ADS7844(); // Constructor
void Init();
// Read 1 sensor value
uint16_t Ch(unsigned char ch_num);
// Read 6 sensors at once
uint32_t Ch6(const uint8_t *channel_numbers, uint16_t *result);
private:
};
#endif
#ifndef AP_ADC_ADS7844_H
#define AP_ADC_ADS7844_H
#define bit_set(p,m) ((p) |= ( 1<<m))
#define bit_clear(p,m) ((p) &= ~(1<<m))
// We use Serial Port 2 in SPI Mode
#define ADC_DATAOUT 51 // MOSI
#define ADC_DATAIN 50 // MISO
#define ADC_SPICLOCK 52 // SCK
#define ADC_CHIP_SELECT 33 // PC4 9 // PH6 Puerto:0x08 Bit mask : 0x40
#define ADC_FILTER_SIZE 8
#include "AP_ADC.h"
#include <inttypes.h>
class AP_ADC_ADS7844 : public AP_ADC
{
public:
AP_ADC_ADS7844(); // Constructor
void Init();
// Read 1 sensor value
uint16_t Ch(unsigned char ch_num);
// Read 6 sensors at once
uint32_t Ch6(const uint8_t *channel_numbers, uint16_t *result);
bool filter_result;
private:
uint16_t _filter[3][ADC_FILTER_SIZE];
uint8_t _filter_index;
};
#endif