mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 08:38:36 -04:00
AP_Math: sync for 4.1.0beta releases
This commit is contained in:
parent
1d46e77942
commit
dd2995af5d
@ -244,36 +244,25 @@ long wrap_360_cd(const long angle)
|
||||
}
|
||||
return res;
|
||||
}
|
||||
template <typename T>
|
||||
float wrap_PI(const T radian)
|
||||
|
||||
ftype wrap_PI(const ftype radian)
|
||||
{
|
||||
auto res = wrap_2PI(radian);
|
||||
ftype res = wrap_2PI(radian);
|
||||
if (res > M_PI) {
|
||||
res -= M_2PI;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template float wrap_PI<int>(const int radian);
|
||||
template float wrap_PI<short>(const short radian);
|
||||
template float wrap_PI<float>(const float radian);
|
||||
template float wrap_PI<double>(const double radian);
|
||||
|
||||
template <typename T>
|
||||
float wrap_2PI(const T radian)
|
||||
ftype wrap_2PI(const ftype radian)
|
||||
{
|
||||
float res = fmodf(static_cast<float>(radian), M_2PI);
|
||||
ftype res = fmodF(radian, M_2PI);
|
||||
if (res < 0) {
|
||||
res += M_2PI;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template float wrap_2PI<int>(const int radian);
|
||||
template float wrap_2PI<short>(const short radian);
|
||||
template float wrap_2PI<float>(const float radian);
|
||||
template float wrap_2PI<double>(const double radian);
|
||||
|
||||
template <typename T>
|
||||
T constrain_value_line(const T amt, const T low, const T high, uint32_t line)
|
||||
{
|
||||
@ -423,7 +412,7 @@ void fill_nanf(float *f, uint16_t count)
|
||||
void fill_nanf(double *f, uint16_t count)
|
||||
{
|
||||
while (count--) {
|
||||
*f++ = 0;
|
||||
*f++ = std::numeric_limits<double>::signaling_NaN();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -142,14 +142,12 @@ double wrap_360_cd(const double angle);
|
||||
/*
|
||||
wrap an angle in radians to -PI ~ PI (equivalent to +- 180 degrees)
|
||||
*/
|
||||
template <typename T>
|
||||
float wrap_PI(const T radian);
|
||||
ftype wrap_PI(const ftype radian);
|
||||
|
||||
/*
|
||||
* wrap an angle in radians to 0..2PI
|
||||
*/
|
||||
template <typename T>
|
||||
float wrap_2PI(const T radian);
|
||||
ftype wrap_2PI(const ftype radian);
|
||||
|
||||
/*
|
||||
* Constrain a value to be within the range: low and high
|
||||
@ -179,7 +177,7 @@ inline int64_t constrain_int64(const int64_t amt, const int64_t low, const int64
|
||||
}
|
||||
|
||||
// degrees -> radians
|
||||
static inline constexpr float radians(float deg)
|
||||
static inline constexpr ftype radians(ftype deg)
|
||||
{
|
||||
return deg * DEG_TO_RAD;
|
||||
}
|
||||
|
@ -738,7 +738,7 @@ void SCurve::add_segments(float L)
|
||||
// Vm - maximum constant velocity
|
||||
// L - Length of the path
|
||||
// t2_out, t4_out, t6_out are the segment durations needed to achieve the kinimatic path specified by the input variables
|
||||
void SCurve::calculate_path(float tj, float Jm, float V0, float Am, float Vm, float L, float &Jm_out, float &t2_out, float &t4_out, float &t6_out) const
|
||||
void SCurve::calculate_path(float tj, float Jm, float V0, float Am, float Vm, float L, float &Jm_out, float &t2_out, float &t4_out, float &t6_out)
|
||||
{
|
||||
// init outputs
|
||||
Jm_out = 0.0f;
|
||||
@ -772,6 +772,7 @@ void SCurve::calculate_path(float tj, float Jm, float V0, float Am, float Vm, fl
|
||||
// solution = 2 - t6 t4 t2 = 0 1 0
|
||||
t2_out = 0.0f;
|
||||
t4_out = MIN(-(V0 - Vm + Am * tj + (Am * Am) / Jm) / Am, MAX(((Am * Am) * (-3.0f / 2.0f) + safe_sqrt((Am * Am * Am * Am) * (1.0f / 4.0f) + (Jm * Jm) * (V0 * V0) + (Am * Am) * (Jm * Jm) * (tj * tj) * (1.0f / 4.0f) + Am * (Jm * Jm) * L * 2.0f - (Am * Am) * Jm * V0 + (Am * Am * Am) * Jm * tj * (1.0f / 2.0f) - Am * (Jm * Jm) * V0 * tj) - Jm * V0 - Am * Jm * tj * (3.0f / 2.0f)) / (Am * Jm), ((Am * Am) * (-3.0f / 2.0f) - safe_sqrt((Am * Am * Am * Am) * (1.0f / 4.0f) + (Jm * Jm) * (V0 * V0) + (Am * Am) * (Jm * Jm) * (tj * tj) * (1.0f / 4.0f) + Am * (Jm * Jm) * L * 2.0f - (Am * Am) * Jm * V0 + (Am * Am * Am) * Jm * tj * (1.0f / 2.0f) - Am * (Jm * Jm) * V0 * tj) - Jm * V0 - Am * Jm * tj * (3.0f / 2.0f)) / (Am * Jm)));
|
||||
t4_out = MAX(t4_out, 0.0);
|
||||
t6_out = 0.0f;
|
||||
}
|
||||
} else {
|
||||
@ -785,6 +786,7 @@ void SCurve::calculate_path(float tj, float Jm, float V0, float Am, float Vm, fl
|
||||
// solution = 7 - t6 t4 t2 = 1 1 1
|
||||
t2_out = Am / Jm - tj;
|
||||
t4_out = MIN(-(V0 - Vm + Am * tj + (Am * Am) / Jm) / Am, MAX(((Am * Am) * (-3.0f / 2.0f) + safe_sqrt((Am * Am * Am * Am) * (1.0f / 4.0f) + (Jm * Jm) * (V0 * V0) + (Am * Am) * (Jm * Jm) * (tj * tj) * (1.0f / 4.0f) + Am * (Jm * Jm) * L * 2.0f - (Am * Am) * Jm * V0 + (Am * Am * Am) * Jm * tj * (1.0f / 2.0f) - Am * (Jm * Jm) * V0 * tj) - Jm * V0 - Am * Jm * tj * (3.0f / 2.0f)) / (Am * Jm), ((Am * Am) * (-3.0f / 2.0f) - safe_sqrt((Am * Am * Am * Am) * (1.0f / 4.0f) + (Jm * Jm) * (V0 * V0) + (Am * Am) * (Jm * Jm) * (tj * tj) * (1.0f / 4.0f) + Am * (Jm * Jm) * L * 2.0f - (Am * Am) * Jm * V0 + (Am * Am * Am) * Jm * tj * (1.0f / 2.0f) - Am * (Jm * Jm) * V0 * tj) - Jm * V0 - Am * Jm * tj * (3.0f / 2.0f)) / (Am * Jm)));
|
||||
t4_out = MAX(t4_out, 0.0);
|
||||
t6_out = t2_out;
|
||||
}
|
||||
}
|
||||
|
@ -52,6 +52,16 @@ public:
|
||||
// initialise and clear the path
|
||||
void init();
|
||||
|
||||
// calculate the segment times for the trigonometric S-Curve path defined by:
|
||||
// tj - duration of the raised cosine jerk profile (aka jerk time)
|
||||
// Jm - maximum value of the raised cosine jerk profile (aka jerk max)
|
||||
// V0 - initial velocity magnitude
|
||||
// Am - maximum constant acceleration
|
||||
// Vm - maximum constant velocity
|
||||
// L - Length of the path
|
||||
// this is an internal function, static for test suite
|
||||
static void calculate_path(float tj, float Jm, float V0, float Am, float Vm, float L, float &Jm_out, float &t2_out, float &t4_out, float &t6_out);
|
||||
|
||||
// generate a trigonometric track in 3D space that moves over a straight line
|
||||
// between two points defined by the origin and destination
|
||||
void calculate_track(const Vector3f &origin, const Vector3f &destination,
|
||||
@ -135,15 +145,6 @@ private:
|
||||
// generate time segments for straight segment
|
||||
void add_segments(float L);
|
||||
|
||||
// calculate the segment times for the trigonometric S-Curve path defined by:
|
||||
// tj - duration of the raised cosine jerk profile (aka jerk time)
|
||||
// Jm - maximum value of the raised cosine jerk profile (aka jerk max)
|
||||
// V0 - initial velocity magnitude
|
||||
// Am - maximum constant acceleration
|
||||
// Vm - maximum constant velocity
|
||||
// L - Length of the path
|
||||
void calculate_path(float tj, float Jm, float V0, float Am, float Vm, float L, float &Jm_out, float &t2_out, float &t4_out, float &t6_out) const;
|
||||
|
||||
// generate three time segments forming the jerk profile
|
||||
void add_segments_jerk(uint8_t &seg_pnt, float tj, float Jm, float Tcj);
|
||||
|
||||
|
@ -155,6 +155,17 @@ void shape_accel_xy(const Vector2f& accel_input, Vector2f& accel,
|
||||
}
|
||||
}
|
||||
|
||||
void shape_accel_xy(const Vector3f& accel_input, Vector3f& accel,
|
||||
float accel_max, float tc, float dt)
|
||||
{
|
||||
const Vector2f accel_input_2f {accel_input.x, accel_input.y};
|
||||
Vector2f accel_2f {accel.x, accel.y};
|
||||
|
||||
shape_accel_xy(accel_input_2f, accel_2f, accel_max, tc, dt);
|
||||
accel.x = accel_2f.x;
|
||||
accel.y = accel_2f.y;
|
||||
}
|
||||
|
||||
|
||||
/* shape_vel_accel and shape_vel_xy calculate a jerk limited path from the current position, velocity and acceleration to an input velocity.
|
||||
The function takes the current position, velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
|
@ -2,6 +2,8 @@
|
||||
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
#include <AP_HAL/AP_HAL_Boards.h>
|
||||
#include "vector2.h"
|
||||
#include "vector3.h"
|
||||
|
||||
#ifndef HAL_WITH_POSTYPE_DOUBLE
|
||||
#define HAL_WITH_POSTYPE_DOUBLE BOARD_FLASH_SIZE > 1024
|
||||
@ -53,6 +55,9 @@ void shape_accel(const float accel_input, float& accel,
|
||||
void shape_accel_xy(const Vector2f& accel_input, Vector2f& accel,
|
||||
const float accel_max, const float tc, const float dt);
|
||||
|
||||
void shape_accel_xy(const Vector3f& accel_input, Vector3f& accel,
|
||||
float accel_max, float tc, float dt);
|
||||
|
||||
/* shape_vel calculates a jerk limited path from the current velocity and acceleration to an input velocity.
|
||||
The function takes the current velocity, and acceleration and calculates the required jerk limited adjustment to the acceleration for the next time dt.
|
||||
The kinematic path is constrained by :
|
||||
|
@ -7,7 +7,7 @@
|
||||
#ifdef M_PI
|
||||
# undef M_PI
|
||||
#endif
|
||||
#define M_PI (3.141592653589793f)
|
||||
#define M_PI (3.141592653589793)
|
||||
|
||||
#ifdef M_PI_2
|
||||
# undef M_PI_2
|
||||
|
@ -26,6 +26,7 @@ typedef double ftype;
|
||||
#define fabsF(x) fabs(x)
|
||||
#define ceilF(x) ceil(x)
|
||||
#define fminF(x,y) fmin(x,y)
|
||||
#define fmodF(x,y) fmod(x,y)
|
||||
#define toftype todouble
|
||||
#else
|
||||
typedef float ftype;
|
||||
@ -43,6 +44,7 @@ typedef float ftype;
|
||||
#define fabsF(x) fabsf(x)
|
||||
#define ceilF(x) ceilf(x)
|
||||
#define fminF(x,y) fminf(x,y)
|
||||
#define fmodF(x,y) fmodf(x,y)
|
||||
#define toftype tofloat
|
||||
#endif
|
||||
|
||||
|
@ -71,33 +71,6 @@ void QuaternionT<T>::rotation_matrix(Matrix3f &m) const
|
||||
m.c.z = 1.0f-2.0f*(q2q2 + q3q3);
|
||||
}
|
||||
|
||||
// return the rotation matrix equivalent for this quaternion after normalization
|
||||
template <typename T>
|
||||
void QuaternionT<T>::rotation_matrix_norm(Matrix3<T> &m) const
|
||||
{
|
||||
const T q1q1 = q1 * q1;
|
||||
const T q1q2 = q1 * q2;
|
||||
const T q1q3 = q1 * q3;
|
||||
const T q1q4 = q1 * q4;
|
||||
const T q2q2 = q2 * q2;
|
||||
const T q2q3 = q2 * q3;
|
||||
const T q2q4 = q2 * q4;
|
||||
const T q3q3 = q3 * q3;
|
||||
const T q3q4 = q3 * q4;
|
||||
const T q4q4 = q4 * q4;
|
||||
const T invs = 1.0f / (q1q1 + q2q2 + q3q3 + q4q4);
|
||||
|
||||
m.a.x = ( q2q2 - q3q3 - q4q4 + q1q1)*invs;
|
||||
m.a.y = 2.0f*(q2q3 - q1q4)*invs;
|
||||
m.a.z = 2.0f*(q2q4 + q1q3)*invs;
|
||||
m.b.x = 2.0f*(q2q3 + q1q4)*invs;
|
||||
m.b.y = (-q2q2 + q3q3 - q4q4 + q1q1)*invs;
|
||||
m.b.z = 2.0f*(q3q4 - q1q2)*invs;
|
||||
m.c.x = 2.0f*(q2q4 - q1q3)*invs;
|
||||
m.c.y = 2.0f*(q3q4 + q1q2)*invs;
|
||||
m.c.z = (-q2q2 - q3q3 + q4q4 + q1q1)*invs;
|
||||
}
|
||||
|
||||
// return the rotation matrix equivalent for this quaternion
|
||||
// Thanks to Martin John Baker
|
||||
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
|
||||
@ -481,9 +454,9 @@ void QuaternionT<T>::from_axis_angle(const Vector3<T> &axis, T theta)
|
||||
q2=q3=q4=0.0f;
|
||||
return;
|
||||
}
|
||||
const T st2 = sinF(theta/2.0f);
|
||||
const T st2 = sinF(0.5*theta);
|
||||
|
||||
q1 = cosF(theta/2.0f);
|
||||
q1 = cosF(0.5*theta);
|
||||
q2 = axis.x * st2;
|
||||
q3 = axis.y * st2;
|
||||
q4 = axis.z * st2;
|
||||
@ -507,7 +480,7 @@ void QuaternionT<T>::to_axis_angle(Vector3<T> &v) const
|
||||
v = Vector3<T>(q2,q3,q4);
|
||||
if (!is_zero(l)) {
|
||||
v /= l;
|
||||
v *= wrap_PI(2.0f * atan2f(l,q1));
|
||||
v *= wrap_PI(2.0f * atan2F(l,q1));
|
||||
}
|
||||
}
|
||||
|
||||
@ -531,11 +504,11 @@ void QuaternionT<T>::from_axis_angle_fast(Vector3<T> v)
|
||||
template <typename T>
|
||||
void QuaternionT<T>::from_axis_angle_fast(const Vector3<T> &axis, T theta)
|
||||
{
|
||||
const T t2 = theta/2.0f;
|
||||
const T t2 = 0.5*theta;
|
||||
const T sqt2 = sq(t2);
|
||||
const T st2 = t2-sqt2*t2/6.0f;
|
||||
|
||||
q1 = 1.0f-(sqt2/2.0f)+sq(sqt2)/24.0f;
|
||||
q1 = 1.0f-(0.5*sqt2)+sq(sqt2)/24.0f;
|
||||
q2 = axis.x * st2;
|
||||
q3 = axis.y * st2;
|
||||
q4 = axis.z * st2;
|
||||
@ -550,13 +523,13 @@ void QuaternionT<T>::rotate_fast(const Vector3<T> &v)
|
||||
if (is_zero(theta)) {
|
||||
return;
|
||||
}
|
||||
const T t2 = theta/2.0f;
|
||||
const T t2 = 0.5*theta;
|
||||
const T sqt2 = sq(t2);
|
||||
T st2 = t2-sqt2*t2/6.0f;
|
||||
st2 /= theta;
|
||||
|
||||
//"rotation quaternion"
|
||||
const T w2 = 1.0f-(sqt2/2.0f)+sq(sqt2)/24.0f;
|
||||
const T w2 = 1.0f-(0.5*sqt2)+sq(sqt2)/24.0f;
|
||||
const T x2 = v.x * st2;
|
||||
const T y2 = v.y * st2;
|
||||
const T z2 = v.z * st2;
|
||||
@ -578,7 +551,7 @@ void QuaternionT<T>::rotate_fast(const Vector3<T> &v)
|
||||
template <typename T>
|
||||
T QuaternionT<T>::get_euler_roll() const
|
||||
{
|
||||
return (atan2f(2.0f*(q1*q2 + q3*q4), 1.0f - 2.0f*(q2*q2 + q3*q3)));
|
||||
return (atan2F(2.0f*(q1*q2 + q3*q4), 1.0f - 2.0f*(q2*q2 + q3*q3)));
|
||||
}
|
||||
|
||||
// get euler pitch angle
|
||||
@ -592,7 +565,7 @@ T QuaternionT<T>::get_euler_pitch() const
|
||||
template <typename T>
|
||||
T QuaternionT<T>::get_euler_yaw() const
|
||||
{
|
||||
return atan2f(2.0f*(q1*q4 + q2*q3), 1.0f - 2.0f*(q3*q3 + q4*q4));
|
||||
return atan2F(2.0f*(q1*q4 + q2*q3), 1.0f - 2.0f*(q3*q3 + q4*q4));
|
||||
}
|
||||
|
||||
// create eulers from a quaternion
|
||||
@ -772,7 +745,7 @@ T QuaternionT<T>::roll_pitch_difference(const QuaternionT<T> &v) const
|
||||
const T vec_len_div2 = constrain_float(vec_diff.length() * 0.5, 0.0, 1.0);
|
||||
|
||||
// calculate and return angular difference
|
||||
return (2.0 * asinf(vec_len_div2));
|
||||
return (2.0 * asinF(vec_len_div2));
|
||||
}
|
||||
|
||||
// define for float and double
|
||||
|
@ -67,9 +67,6 @@ public:
|
||||
void rotation_matrix(Matrix3f &m) const;
|
||||
void rotation_matrix(Matrix3d &m) const;
|
||||
|
||||
// return the rotation matrix equivalent for this quaternion after normalization
|
||||
void rotation_matrix_norm(Matrix3<T> &m) const;
|
||||
|
||||
// return the rotation matrix equivalent for this quaternion
|
||||
void from_rotation_matrix(const Matrix3<T> &m);
|
||||
|
||||
|
@ -109,7 +109,7 @@ TEST(Vector2Test, angle)
|
||||
{
|
||||
EXPECT_FLOAT_EQ(M_PI/2, Vector2f(0, 1).angle());
|
||||
EXPECT_FLOAT_EQ(M_PI/4, Vector2f(1, 1).angle());
|
||||
EXPECT_FLOAT_EQ(0.0f, Vector2f(1, 0).angle());
|
||||
EXPECT_FLOAT_EQ(0.0f, Vector2d(1, 0).angle());
|
||||
EXPECT_FLOAT_EQ(M_PI*5/4, Vector2f(-1, -1).angle());
|
||||
EXPECT_FLOAT_EQ(M_PI*5/4, Vector2f(-5, -5).angle());
|
||||
|
||||
|
@ -34,6 +34,7 @@
|
||||
#endif
|
||||
|
||||
#include <cmath>
|
||||
#include <float.h>
|
||||
#include <AP_Common/AP_Common.h>
|
||||
#include "ftype.h"
|
||||
|
||||
|
@ -87,6 +87,12 @@ public:
|
||||
, y(y0)
|
||||
, z(z0) {}
|
||||
|
||||
//Create a Vector3 from a Vector2 with z
|
||||
constexpr Vector3<T>(const Vector2<T> &v0, const T z0)
|
||||
: x(v0.x)
|
||||
, y(v0.y)
|
||||
, z(z0) {}
|
||||
|
||||
// test for equality
|
||||
bool operator ==(const Vector3<T> &v) const;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user