Math: added location functions to math library

these do common calculations on struct Location
This commit is contained in:
Andrew Tridgell 2012-07-04 09:19:36 +10:00
parent 1314e4f872
commit dd200cba31
6 changed files with 226 additions and 1 deletions

View File

@ -29,4 +29,20 @@ float safe_sqrt(float v);
// rotation to an existing rotation of a sensor such as the compass // rotation to an existing rotation of a sensor such as the compass
enum Rotation rotation_combination(enum Rotation r1, enum Rotation r2, bool *found = NULL); enum Rotation rotation_combination(enum Rotation r1, enum Rotation r2, bool *found = NULL);
#endif // return distance in meters between two locations
int32_t get_distance(const struct Location *loc1, const struct Location *loc2);
// return bearing in centi-degrees between two locations
int32_t get_bearing(const struct Location *loc1, const struct Location *loc2);
// see if location is past a line perpendicular to
// the line between point1 and point2. If point1 is
// our previous waypoint and point2 is our target waypoint
// then this function returns true if we have flown past
// the target waypoint
bool location_passed_point(struct Location &location,
struct Location &point1,
struct Location &point2);
#endif // AP_MATH_H

View File

@ -0,0 +1,4 @@
include ../../../AP_Common/Arduino.mk
sitl:
make -f ../../../../libraries/Desktop/Desktop.mk

View File

@ -0,0 +1,101 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//
// Unit tests for the AP_Math polygon code
//
#include <FastSerial.h>
#include <AP_Common.h>
#include <AP_Math.h>
#ifdef DESKTOP_BUILD
// all of this is needed to build with SITL
#include <DataFlash.h>
#include <APM_RC.h>
#include <GCS_MAVLink.h>
#include <Arduino_Mega_ISR_Registry.h>
#include <AP_PeriodicProcess.h>
#include <AP_ADC.h>
#include <AP_Baro.h>
#include <AP_Compass.h>
#include <AP_GPS.h>
#include <Filter.h>
#include <SITL.h>
#include <I2C.h>
#include <SPI.h>
#include <AP_Declination.h>
Arduino_Mega_ISR_Registry isr_registry;
AP_Baro_BMP085_HIL barometer;
AP_Compass_HIL compass;
SITL sitl;
BetterStream *mavlink_comm_0_port;
BetterStream *mavlink_comm_1_port;
mavlink_system_t mavlink_system;
#endif
FastSerialPort(Serial, 0);
static const struct {
Vector2f wp1, wp2, location;
bool passed;
} test_points[] = {
{ Vector2f(-35.3647759314918, 149.16265692810987),
Vector2f(-35.36279922658029, 149.16352169591426),
Vector2f(-35.36214956969903, 149.16461410046492), true },
{ Vector2f(-35.36438601157189, 149.16613916088568),
Vector2f(-35.364432558610254, 149.16287313113048),
Vector2f(-35.36491510034746, 149.16365837225004), false },
{ Vector2f(0, 0),
Vector2f(0, 1),
Vector2f(0, 2), true },
{ Vector2f(0, 0),
Vector2f(0, 2),
Vector2f(0, 1), false },
{ Vector2f(0, 0),
Vector2f(1, 0),
Vector2f(2, 0), true },
{ Vector2f(0, 0),
Vector2f(2, 0),
Vector2f(1, 0), false },
{ Vector2f(0, 0),
Vector2f(-1, 1),
Vector2f(-2, 2), true },
};
#define ARRAY_LENGTH(x) (sizeof((x))/sizeof((x)[0]))
static struct Location location_from_point(Vector2f pt)
{
struct Location loc = {0};
loc.lat = pt.x * 1.0e7;
loc.lng = pt.y * 1.0e7;
return loc;
}
static void test_passed_waypoint(void)
{
Serial.println("waypoint tests starting");
for (uint8_t i=0; i<ARRAY_LENGTH(test_points); i++) {
struct Location loc = location_from_point(test_points[i].location);
struct Location wp1 = location_from_point(test_points[i].wp1);
struct Location wp2 = location_from_point(test_points[i].wp2);
if (location_passed_point(loc, wp1, wp2) != test_points[i].passed) {
Serial.printf("Failed waypoint test %u\n", (unsigned)i);
return;
}
}
Serial.println("waypoint tests OK");
}
/*
polygon tests
*/
void setup(void)
{
Serial.begin(115200);
test_passed_waypoint();
}
void
loop(void)
{
}

View File

@ -0,0 +1,96 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* location.cpp
* Copyright (C) Andrew Tridgell 2011
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
this module deals with calculations involving struct Location
*/
#include <FastSerial.h>
#include "AP_Math.h"
static float longitude_scale(const struct Location *loc)
{
static uint32_t last_lat;
static float scale = 1.0;
if (abs(last_lat - loc->lat) < 100000) {
// we are within 0.01 degrees (about 1km) of the
// same latitude. We can avoid the cos() and return
// the same scale factor.
return scale;
}
scale = cos((fabs((float)loc->lat)/1.0e7) * 0.0174532925);
return scale;
}
// return distance in meters to between two locations, or -1
// if one of the locations is invalid
int32_t get_distance(const struct Location *loc1, const struct Location *loc2)
{
if (loc1->lat == 0 || loc1->lng == 0)
return -1;
if(loc2->lat == 0 || loc2->lng == 0)
return -1;
float dlat = (float)(loc2->lat - loc1->lat);
float dlong = ((float)(loc2->lng - loc1->lng)) * longitude_scale(loc2);
return sqrt(sq(dlat) + sq(dlong)) * .01113195;
}
// return bearing in centi-degrees between two locations
int32_t get_bearing(const struct Location *loc1, const struct Location *loc2)
{
int32_t off_x = loc2->lng - loc1->lng;
int32_t off_y = (loc2->lat - loc1->lat) / longitude_scale(loc2);
int32_t bearing = 9000 + atan2(-off_y, off_x) * 5729.57795;
if (bearing < 0) bearing += 36000;
return bearing;
}
// see if location is past a line perpendicular to
// the line between point1 and point2. If point1 is
// our previous waypoint and point2 is our target waypoint
// then this function returns true if we have flown past
// the target waypoint
bool location_passed_point(struct Location &location,
struct Location &point1,
struct Location &point2)
{
// the 3 points form a triangle. If the angle between lines
// point1->point2 and location->point2 is greater than 90
// degrees then we have passed the waypoint
Vector2f loc1(location.lat, location.lng);
Vector2f pt1(point1.lat, point1.lng);
Vector2f pt2(point2.lat, point2.lng);
float angle = (loc1 - pt2).angle(pt1 - pt2);
if (angle == 0) {
// if we are exactly on the line between point1 and
// point2 then we are past the waypoint if the
// distance from location to point1 is greater then
// the distance from point2 to point1
return get_distance(&location, &point1) >
get_distance(&point2, &point1);
}
if (degrees(angle) > 90) {
return true;
}
return false;
}

View File

@ -142,6 +142,10 @@ struct Vector2
T angle(const Vector2<T> &v1, const Vector2<T> &v2) T angle(const Vector2<T> &v1, const Vector2<T> &v2)
{ return (T)acosf((v1*v2) / (v1.length()*v2.length())); } { return (T)acosf((v1*v2) / (v1.length()*v2.length())); }
// computes the angle between this vector and another vector
T angle(const Vector2<T> &v2)
{ return (T)acosf(((*this)*v2) / (this->length()*v2.length())); }
// computes the angle between 2 normalized arbitrary vectors // computes the angle between 2 normalized arbitrary vectors
T angle_normalized(const Vector2<T> &v1, const Vector2<T> &v2) T angle_normalized(const Vector2<T> &v1, const Vector2<T> &v2)
{ return (T)acosf(v1*v2); } { return (T)acosf(v1*v2); }

View File

@ -167,6 +167,10 @@ public:
T angle(const Vector3<T> &v1, const Vector3<T> &v2) T angle(const Vector3<T> &v1, const Vector3<T> &v2)
{ return (T)acosf((v1*v2) / (v1.length()*v2.length())); } { return (T)acosf((v1*v2) / (v1.length()*v2.length())); }
// computes the angle between this vector and another vector
T angle(const Vector3<T> &v2)
{ return (T)acosf(((*this)*v2) / (this->length()*v2.length())); }
// computes the angle between 2 arbitrary normalized vectors // computes the angle between 2 arbitrary normalized vectors
T angle_normalized(const Vector3<T> &v1, const Vector3<T> &v2) T angle_normalized(const Vector3<T> &v1, const Vector3<T> &v2)
{ return (T)acosf(v1*v2); } { return (T)acosf(v1*v2); }