uncrustify libraries/AP_ADC/AP_ADC_ADS7844.cpp

This commit is contained in:
uncrustify 2012-08-16 22:39:21 -07:00 committed by Pat Hickey
parent 7bfe32fd3d
commit dcf4a9824d

View File

@ -1,65 +1,65 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/* /*
AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega * AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega
Code by Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com * Code by Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com
*
Modified by John Ihlein 6 / 19 / 2010 to: * Modified by John Ihlein 6 / 19 / 2010 to:
1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably * 1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably
only an issue on initial read of ADC at program start. * only an issue on initial read of ADC at program start.
2)Reorder analog read order as follows: * 2)Reorder analog read order as follows:
p, q, r, ax, ay, az * p, q, r, ax, ay, az
*
This library is free software; you can redistribute it and / or * This library is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public * modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either * License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. * version 2.1 of the License, or (at your option) any later version.
*
External ADC ADS7844 is connected via Serial port 2 (in SPI mode) * External ADC ADS7844 is connected via Serial port 2 (in SPI mode)
TXD2 = MOSI = pin PH1 * TXD2 = MOSI = pin PH1
RXD2 = MISO = pin PH0 * RXD2 = MISO = pin PH0
XCK2 = SCK = pin PH2 * XCK2 = SCK = pin PH2
Chip Select pin is PC4 (33) [PH6 (9)] * Chip Select pin is PC4 (33) [PH6 (9)]
We are using the 16 clocks per conversion timming to increase efficiency (fast) * We are using the 16 clocks per conversion timming to increase efficiency (fast)
*
The sampling frequency is 1kHz (Timer2 overflow interrupt) * The sampling frequency is 1kHz (Timer2 overflow interrupt)
*
So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so * So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so
we have an 10x oversampling and averaging. * we have an 10x oversampling and averaging.
*
Methods: * Methods:
Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt) * Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt)
Ch(ch_num) : Return the ADC channel value * Ch(ch_num) : Return the ADC channel value
*
// HJI - Input definitions. USB connector assumed to be on the left, Rx and servo * // HJI - Input definitions. USB connector assumed to be on the left, Rx and servo
// connector pins to the rear. IMU shield components facing up. These are board * // connector pins to the rear. IMU shield components facing up. These are board
// referenced sensor inputs, not device referenced. * // referenced sensor inputs, not device referenced.
On Ardupilot Mega Hardware, oriented as described above: * On Ardupilot Mega Hardware, oriented as described above:
Chennel 0 : yaw rate, r * Chennel 0 : yaw rate, r
Channel 1 : roll rate, p * Channel 1 : roll rate, p
Channel 2 : pitch rate, q * Channel 2 : pitch rate, q
Channel 3 : x / y gyro temperature * Channel 3 : x / y gyro temperature
Channel 4 : x acceleration, aX * Channel 4 : x acceleration, aX
Channel 5 : y acceleration, aY * Channel 5 : y acceleration, aY
Channel 6 : z acceleration, aZ * Channel 6 : z acceleration, aZ
Channel 7 : Differential pressure sensor port * Channel 7 : Differential pressure sensor port
*
*/ */
#include "AP_ADC_ADS7844.h" #include "AP_ADC_ADS7844.h"
extern "C" { extern "C" {
// AVR LibC Includes // AVR LibC Includes
#include <inttypes.h> #include <inttypes.h>
#include <stdint.h> #include <stdint.h>
#include <avr/interrupt.h> #include <avr/interrupt.h>
} }
#if defined(ARDUINO) && ARDUINO >= 100 #if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h" #include "Arduino.h"
#else #else
#include "WConstants.h" #include "WConstants.h"
#endif #endif
// Commands for reading ADC channels on ADS7844 // Commands for reading ADC channels on ADS7844
static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 }; static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 };
// the sum of the values since last read // the sum of the values since last read
static volatile uint32_t _sum[8]; static volatile uint32_t _sum[8];
@ -79,48 +79,48 @@ static uint32_t last_ch6_micros;
static inline unsigned char ADC_SPI_transfer(unsigned char data) static inline unsigned char ADC_SPI_transfer(unsigned char data)
{ {
/* Put data into buffer, sends the data */ /* Put data into buffer, sends the data */
UDR2 = data; UDR2 = data;
/* Wait for data to be received */ /* Wait for data to be received */
while ( !(UCSR2A & (1 << RXC2)) ); while ( !(UCSR2A & (1 << RXC2)) ) ;
/* Get and return received data from buffer */ /* Get and return received data from buffer */
return UDR2; return UDR2;
} }
void AP_ADC_ADS7844::read(uint32_t tnow) void AP_ADC_ADS7844::read(uint32_t tnow)
{ {
uint8_t ch; uint8_t ch;
bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4) bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4)
ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel
for (ch = 0; ch < 8; ch++) { for (ch = 0; ch < 8; ch++) {
uint16_t v; uint16_t v;
v = ADC_SPI_transfer(0) << 8; // Read first byte v = ADC_SPI_transfer(0) << 8; // Read first byte
v |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command v |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command
if (v & 0x8007) { if (v & 0x8007) {
// this is a 12-bit ADC, shifted by 3 bits. // this is a 12-bit ADC, shifted by 3 bits.
// if we get other bits set then the value is // if we get other bits set then the value is
// bogus and should be ignored // bogus and should be ignored
continue; continue;
} }
if (++_count[ch] == 0) { if (++_count[ch] == 0) {
// overflow ... shouldn't happen too often // overflow ... shouldn't happen too often
// unless we're just not using the // unless we're just not using the
// channel. Notice that we overflow the count // channel. Notice that we overflow the count
// to 1 here, not zero, as otherwise the // to 1 here, not zero, as otherwise the
// reader below could get a division by zero // reader below could get a division by zero
_sum[ch] = 0; _sum[ch] = 0;
_count[ch] = 1; _count[ch] = 1;
} }
_sum[ch] += (v >> 3); _sum[ch] += (v >> 3);
} }
bit_set(PORTC, 4); // Disable Chip Select (PIN PC4) bit_set(PORTC, 4); // Disable Chip Select (PIN PC4)
} }
@ -134,31 +134,31 @@ AP_ADC_ADS7844::AP_ADC_ADS7844()
void AP_ADC_ADS7844::Init( AP_PeriodicProcess * scheduler ) void AP_ADC_ADS7844::Init( AP_PeriodicProcess * scheduler )
{ {
scheduler->suspend_timer(); scheduler->suspend_timer();
pinMode(ADC_CHIP_SELECT, OUTPUT); pinMode(ADC_CHIP_SELECT, OUTPUT);
digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low) digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low)
// Setup Serial Port2 in SPI mode // Setup Serial Port2 in SPI mode
UBRR2 = 0; UBRR2 = 0;
DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode
// Set MSPI mode of operation and SPI data mode 0. // Set MSPI mode of operation and SPI data mode 0.
UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2); UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2);
// Enable receiver and transmitter. // Enable receiver and transmitter.
UCSR2B = (1 << RXEN2) | (1 << TXEN2); UCSR2B = (1 << RXEN2) | (1 << TXEN2);
// Set Baud rate // Set Baud rate
UBRR2 = 2; // SPI clock running at 2.6MHz UBRR2 = 2; // SPI clock running at 2.6MHz
// get an initial value for each channel. This ensures // get an initial value for each channel. This ensures
// _count[] is never zero // _count[] is never zero
for (uint8_t i=0; i<8; i++) { for (uint8_t i=0; i<8; i++) {
uint16_t adc_tmp; uint16_t adc_tmp;
adc_tmp = ADC_SPI_transfer(0) << 8; adc_tmp = ADC_SPI_transfer(0) << 8;
adc_tmp |= ADC_SPI_transfer(adc_cmd[i + 1]); adc_tmp |= ADC_SPI_transfer(adc_cmd[i + 1]);
_count[i] = 1; _count[i] = 1;
_sum[i] = adc_tmp; _sum[i] = adc_tmp;
} }
last_ch6_micros = micros(); last_ch6_micros = micros();
scheduler->resume_timer(); scheduler->resume_timer();
scheduler->register_process( AP_ADC_ADS7844::read ); scheduler->register_process( AP_ADC_ADS7844::read );
@ -168,33 +168,33 @@ void AP_ADC_ADS7844::Init( AP_PeriodicProcess * scheduler )
// Read one channel value // Read one channel value
float AP_ADC_ADS7844::Ch(uint8_t ch_num) float AP_ADC_ADS7844::Ch(uint8_t ch_num)
{ {
uint16_t count; uint16_t count;
uint32_t sum; uint32_t sum;
// ensure we have at least one value // ensure we have at least one value
while (_count[ch_num] == 0) /* noop */ ; while (_count[ch_num] == 0) /* noop */;
// grab the value with interrupts disabled, and clear the count // grab the value with interrupts disabled, and clear the count
cli(); cli();
count = _count[ch_num]; count = _count[ch_num];
sum = _sum[ch_num]; sum = _sum[ch_num];
_count[ch_num] = 0; _count[ch_num] = 0;
_sum[ch_num] = 0; _sum[ch_num] = 0;
sei(); sei();
return ((float)sum)/count; return ((float)sum)/count;
} }
// see if Ch6() can return new data // see if Ch6() can return new data
bool AP_ADC_ADS7844::new_data_available(const uint8_t *channel_numbers) bool AP_ADC_ADS7844::new_data_available(const uint8_t *channel_numbers)
{ {
uint8_t i; uint8_t i;
for (i=0; i<6; i++) { for (i=0; i<6; i++) {
if (_count[channel_numbers[i]] == 0) { if (_count[channel_numbers[i]] == 0) {
return false; return false;
} }
} }
return true; return true;
} }
@ -206,36 +206,36 @@ bool AP_ADC_ADS7844::new_data_available(const uint8_t *channel_numbers)
// then you will get very strange results // then you will get very strange results
uint32_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, float *result) uint32_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, float *result)
{ {
uint16_t count[6]; uint16_t count[6];
uint32_t sum[6]; uint32_t sum[6];
uint8_t i; uint8_t i;
// ensure we have at least one value // ensure we have at least one value
for (i=0; i<6; i++) { for (i=0; i<6; i++) {
while (_count[channel_numbers[i]] == 0) /* noop */; while (_count[channel_numbers[i]] == 0) /* noop */;
} }
// grab the values with interrupts disabled, and clear the counts // grab the values with interrupts disabled, and clear the counts
cli(); cli();
for (i=0; i<6; i++) { for (i=0; i<6; i++) {
count[i] = _count[channel_numbers[i]]; count[i] = _count[channel_numbers[i]];
sum[i] = _sum[channel_numbers[i]]; sum[i] = _sum[channel_numbers[i]];
_count[channel_numbers[i]] = 0; _count[channel_numbers[i]] = 0;
_sum[channel_numbers[i]] = 0; _sum[channel_numbers[i]] = 0;
} }
sei(); sei();
// calculate averages. We keep this out of the cli region // calculate averages. We keep this out of the cli region
// to prevent us stalling the ISR while doing the // to prevent us stalling the ISR while doing the
// division. That costs us 36 bytes of stack, but I think its // division. That costs us 36 bytes of stack, but I think its
// worth it. // worth it.
for (i = 0; i < 6; i++) { for (i = 0; i < 6; i++) {
result[i] = sum[i] / (float)count[i]; result[i] = sum[i] / (float)count[i];
} }
// return number of microseconds since last call // return number of microseconds since last call
uint32_t us = micros(); uint32_t us = micros();
uint32_t ret = us - last_ch6_micros; uint32_t ret = us - last_ch6_micros;
last_ch6_micros = us; last_ch6_micros = us;
return ret; return ret;
} }